
NASA-CR-192798

JPL Publication 92-12

Conjunctive Programming:

An Interactive Approach to

Software System Synthesis

Robert C. Tausworthe

(NASA-CR-192798) CONJUNCTIVE

PROGRAMMING: AN INTERACTIVE

i APPROACH TO SOFT_ARE SYSTEM
SYNTHESIS (JPL) 136 p

G3/61

N93-2270I

unclas

0154764

August 1, 1992

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Instituteof Technology
Pasadena, California

JPL Publication 92-12

Conjunctive Programming:

An Interactive Approach to

Software System Synthesis

Robert C. Tausworthe

August 1, 1992

NASA
National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

92-12

The research described in this publication was carried out by the Jet Propul-

sion Laboratory, California Institute of Technology, under a contract with the

National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise, does not constitute or im-

ply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

Clipper is a trademark of Nantucket Corporation.
IBM is a trademark of International Business Machines, Inc.

IhTEX is a trademark of Addison-Wesley Publishing Company, Inc.
Microsoft and MS-DOS are trademarks of Microsoft Corporation.

PostScript is a trademark of Adobe Systems, Inc.
TEX and .A2vtS-TEX are trademarks of the American Mathematical Society.
Ventura Publisher is a trademark of Ventura Software, Inc.

Copyright 1992 California Institute of Technology. All rights reserved. U.S.
Government sponsorship under NASA Contract NAS7-918 acknowledged.

92-12
..w

lU

Abstract

This report introduces a technique of software documentation

called conjunctive programming and discusses its role in the devel-

opment and maintenance of software systems. The report also de-

scribes the Co_lT"oin tool, an adjunct to assist practitioners. Aimed at

supporting software reuse while conforming with conventional devel-

opment practices, conjunctive programming is defined as the extrac-

tion, integration, and embellishment of pertinent information ob-
tained directly from an existing database of software artifacts, such

as specifications, source code, configuration data, link-edit scripts,

utility files, and other relevant information, into a product that

achieves desired levels of detail, content, and production quality.

Conjunctive programs typically include automatically generated ta-
bles of contents, indexes, cross references, bibliographic citations, ta-

bles, and figures (including graphics and illustrations). This report

presents an example of conjunctive programming by documenting

the use and implementation of the Coq]oin program.

iv 92-12

± =:=:

Acknowledgements:

The author would liketo acknowledge and thank Brian Beckman,

Thomas Fouser,and Karen Owens for theirencouragement, review,

and suggestionsinthe writingof thisreport,and Ellen Reinig and

Barbara Amago for theirexpertiseineditingand preparing the ma-

terialfor publication.

92-12

Contents

INTRODUCTION 1

1.1 Documentation Problems 1

1.2 Document Markup 3

1.3 Literate Programming 4

CONJUNCTIVE PROGRAMMING

2.1

2.2

2.3

2.4

2.5

2.6

7

The Concept 7

Life Cycle Considerations 11

The Cor0roin Program 12

Impacts on Method and Expression 12
Goals 13

Relation to Literate Programming 13

USING CorEToin
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

17

The Source File(s) 17
Selective Inclusion of Text Files: _access 18

Setting the Context Separator: Y,break 22

Setting the Alignment Column: _,¢oltum , 22

Specifying the String Match Count Signal: Y,cotmt 23

Conversion of Non-Compilable Characters: _,gaxbage 23

Setting File Search Paths: Y,path 24

Setting the Environment: Y,prefix and Y,poatfix 25

Defining the Access Selection Separator: Y,raage 25

Displaying the Co_;roin Directives: Y,show 26

Displaying File Sizes: Y,size 26

Altering the TAB Width: Y,tabs 27

INSTALLING AND RUNNING Coz_oin 29

4.1 Configuration 29
4.2 Installation 29

4.3 Running Coxl%oin 30

FURTHER CONSIDERATIONS 33

5.1 Document Organization 33

5.2 Entity Reference Linkages 34

5.3 Retro-Engineering 36

6 FUTURE USAGE ENHANCEMENTS 39

vi 92-12

?

8

INTERNAL OPERATIONS 43

7.1 A Word on Programming Style 44

7.2 Program Preamble and ANSI Header Files 46

7.3 Definitions, Defaults, and Macros 48

7.3.1 Synonyms 48
7.3.2 Manifest Constants "... 48

7.3.3 Directives 49

7.3.4 Default Parameters 49

7.3.5 Macro Function 50

7.4 Function Prototypes for the TOP-C Library 50

7.5 Local Data Structures 52

7.6 The main() Program 54

7.7 The initialization() Function 56

7.8 The command line() Function 58
7.9 The announce() Function 59

7.10 The error_eSsage() Function 60

7.11 The usage() _ncti0n 61
The fiie_defauits() Function 62

The open io files()Function 63

The file_open() Function 64

The timestamp() Function 65

The right_fill() Function 67
The Conjoin_files() Function 68

The directive() Function 70

The strext() Function 74

The access() Function 75

The match_parameters() Function 77

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

The

The

The

The

The

The

access_condition() Function 78

open access() Function 79

scan_to_bgn_match () Function 80

col)y_to_end_match() Function 82

fgetstr() Function 85

putline() Function 86

TOP-C LIBRARY FUNCTIONS 87

8.1 The stratrim() Function 87

8.2 The strdup() Function 88

8.3 The strfnb() Function 89

8.4 The strinsert() Function 90

8.5 The strl_rr() Function 91

8.6 The strnset() Function 92

8.7 The strtcpy() Function 93
8.8 The strtri,,() Function 94

i
|

|
I

-I

92-12 vii

9 MAINTAINING THE Co_7oin PROGRAM

10 ERROR MESSAGES

95

97

Appendices

A CoqToin PROGRAM LISTING 99

B Co_roin CONSTRUCTION 117
B.1 The Master Document File 117

B.2 The Program Compilation Script 120

B.3 The Program Compilation 14haXEFile 121

B.4 The Document Construction Script 122

B.5 The Usage Message MAKE File 123
B.6 The Document MAKE File 124

C Co_7oin FUNCTIONAL STRUCTURE 127
C.1 Call Tree 127
C.2 Reference List 130

D REFERENCES 133

List of Figures

1 TEX-based Conjunctive Programming Information Flow 9

i
}

92-12 1

1 INTRODUCTION

1.1 Documentation Problems

One of the traditional problems with maintaining and reusing computer pro-

grams is understanding--even by the authors, after a period of time has elapsed.

Another is consistency among the software artifacts (program and library code,

documents, linkage-edit files, databases, etc.) as time progresses and as adap-

tations evolve within multiple platforms.

Each programmer has a particular individual manner of writing programs
that includes organization and composition, choice of algorithms, method of

indentation, density of comments, naming of variables, extent of information

hiding, application of modular packaging, and form of expression. In addition,
the visual appearance, including typography and graphics, may vary according

to the programmer's personal style. It remains a fact that a program written

by someone else may be very difficult to understand, even when produced by

acceptable development practices.

Some advocate "self-documenting code," or intensely annotated programs

that contain all the information that the programmers believe is necessary.

Making a program entirely readable by itself is, in some sense, analogous to

making a circuit board or computer chip layout readable by itself: It is a dif-

ficult process usually producing unsatisfactory results that are not appropriate

for the medium. Rather, readability gains where explanation, clarity, struc-

ture, visualization, layout, use of color, and rendering can be separately and
adequately treated.

In the past, software artifacts were viewed by humans as documents. In the

automated world of today, however, the concept of what a document is has un-

dergone a vast change. The computer and communications industries have made

enormous progress in giving humans immediate access to huge stores of informa-

tion. The majority of this information, captured in printed material, libraries,

and computer files, is ultimately for human perception. Some information is

fully formatted for immediate and direct perception as printed matter. Some

is fully formatted, ready to be rendered into perceivable form (e.g., PostScript

files, digital video, and sound recordings). The rest is stored unformatted, but

in such a way that it is possible to format, process, or otherwise render it for

direct perception (e.g., in databases and in multimedia hypertext documents).
In the future, expansion of the documentation concept to include an even wider

context of perception will, no doubt lead to new needs for people to locate, per-

ceive, and interactively understand not only software artifacts, but large bases

of information of arbitrary types as well.

Software documentation problems have sprung from a number of diverse

sources, among which are the lack of accepted, effective industry-wide stan-

dards; the conspicuous absence of software documentation courses in university

curricula; the inadequate training within corporate development programs; the

2 92-12

emphasis within existing standards on form, rather than on substance and suf-

ficiency; the uncertainty in, ignorance of, and insensitivity of developers to

the needs of readers; the inability to provide the proper level and content of

material needed by users; the prohibitively high cost of providing highly read-

able, textbook-quality documentation; the pressure by managers and customers

to "get the code working"; the deficient allocations of resources for providing

proper documentation; the shortfall of practical methods and friendly, inte-

grated tools for doing a good documentation job; and the lack of cost-effective

means for combating the continuing entropic divergence in consistency among
art if acts.

In a recent visit to the library of the JPL Software Resource Center, an

organization formed to guide the improvement of the Laboratory's software en-

gineering methods and practices, I found only one text completely devoted to

documenting a program [1], and one other on diagrammatic methods applied

to programming [3]. The IATEX [4] reference manual was there, but that text
tells how to compile a document, not how to document a program. Some of the

library's texts devoted space to defining the doCumentation problem_ justifying

why projects should improve their documentation and giving examples of doc-

ument outlines, code annotation, review guidelines, and subjective acceptance
criteria. However, not one of the texts offered a real, codified, practical and

comprehensive approach to program understanding. Such works may exist, but
at JPL their teachings are not part of the culture.

Most of us in the software industry have taken high school and university

courses in composition. We have at least been exposed to the art of literary

discourse, expression, style, and organization. If we have forgotten, or otherwise

need to (re)learn how to communicate in writing, there are books, reference
works, and computerized tools readily available to help us at all levels of ability.
It would therefore seem more natural for us to be able to explain something in

our natural language than in a syntactically more restricted, awkward computer

language form: But a formula for producing software Understandability is a tall
order. When applied by the practit_onerl it must be capable of causing objects
to be Created that will communicate the intended information to the intended

readers of presupposed intelligence levels, areas of skill, and cognitive styles [2].

This formula may not exist.

In my experience, the best software documentation exists in journal articles

and in textbooks on algorithms. In each of these understandability has been
scrutinized by referees and editors. Unreadable works are rejected before their

release to the public, and works of inferior quality that leak through the review

process are generally short-lived. Those that survive serve as examples of the

high quality that _an be=attained.

In one not atypical work_J5_], I noted that the ratio of space devoted to
accompanying narrative, mathematical formulae, derlvation figures, tables, and

other explanatory material exceeded the space devoted to displaying the code

by a factor ranging from about two to ten! If this one sample is anywhere near

92-12 3

to being a valid indicator, and if textbook quality is what is really required for

reader understanding, then industry must expect its software projects to require

a far greater proportion of time and resources on documentation than any other

development pursuit. Indeed, most projects of any size will not be able to afford

textbook-quality documentation.

Sadly, I do not have a general approach to solving the overall documenta-

tion problem either. Far more resources than I have, and wiser faculties than

mine have attacked the problem vigorously for many years, with only meager

success. This report does, however, offer a concept, a practical approach, and

a simple tool to demonstrate a practice that, I hope, will help to increase pro-

grammer sensitivity to the needs of readers, assist in producing good documents

in normal documentation time, permit separate development and documenta-

tion efforts to take place, and promote consistency among software artifacts. I

believe that any level of content a project may decide upon for a document, from

copious detail in meticulous, multi-linked, multicolored hypermedia, to no doc-

umentation at all, can be accommodated within this concept. Whatever form

of documentation is chosen, from textbook or journal rigor, to Department of

Defense standards, to undisciplined personal quirks, can be created. As long as

the sources of software artifacts are accessible within the system environment,

the documentation process should be able to apply the technique presented in

this report.

1.2 Document Markup

One concept central to the approach of this report is that ancillary information

may be benignly inserted into software artifacts so as either to enhance the
primary information content or extend the utility of those artifacts. Markup is

a type of information that is introduced into data to convey special interpre-

tations. It is so called because of its resemblance to the markings that editors

make in drafts of paper documentation. Markup makes use of "start tags" and
"end tags" that respectively precede and follow each logical portion of the data.

Tags are specially formed so that the markup can be recognized and processed

separately from data that surround it.

Markup tags fall into four categories:

(1) Descriptive markup, which defines the structure and appearance of a doc-
ument. These tags identify such items as sections, subsections, citations,

references, fonts, and so on.

(2) Entity references, which are requests for objects to be moved into the

document at (or near) the point of reference. The objects themselves may
reside elsewhere within the medium containing the reference, or externally.

(3) Markup declarations, which are statements that control how the markup

is interpreted. These can be used to define objects directly and also to

4 92-12

create additional markup descriptions.

(4) Processing instructions, which are instructions to the processing system,

in its own language, to take specifc actions. Unlike the three other types
of markup, this markup is system-dependent, and perhaps application-

dependent, as well.

Markup tags do not need to be physically embedded within the information

medium itself. They can be maintained in a separate database that defines the

type, location, and other particulars of each mark.

American industry and the international community have developed the

Standard Generalized Markup Language (SGML) [6], and are in the draft stage

of developing HyTime, a Hypermedia/Time-based document-structuring lan-

guage [7] built on SGML. These standards offer ways to make "information
about information" interoperable. An introductory article on HyTime appears

in [8]. .- _ _ _=
In a markup system, when a document type (such as a book, an article, or

a report) is d_;fined, a distinction is made between the information to be pre-

sented and the insiructions for rendering that information for perception. This

is a fairly straightforward process for many traditional types of documents,

where information consists of printable words, punctuation, and simple graph-

ics. Formatting a document follows a style guide, or specification that associates

rendering instructions with generic markup tags. All that is necessary to refor-

mat an entire document is to apply a different style guide.

Markup tagging offers another, even more significant, benefit: collections
of tagged objects may be queried like databases. By using special tags for

interlinking objects, information products can access the contents of other in-

formation products by reference. The use of automated query data involving

actual objects, rather than manually generatedsurrogates of those data, can

help immunize the produced documents against obsolescence. Moreover, the in-

formation in tagged objects remains available for other uses totally unforeseen

when the objects and tags were created.

Markup tagging for document rendering and style must be recognized by the

target document-processing system. Tagging for location of information must be

recognized by the agents that establish and utilize linkages among objects. The

placement and maintenance of linkage tags are the responsibilities of authors

and owners of the information objects queried.

1.3 Literate Programming

Donald E. Knuth of Stanford University released a markup Style utility in 1983

named WEB [11] as part of a project thatals_ developed the _ markup system
and document compiler [i2]. The use of W.B by Knuth [13] and others [14, 15, 16,

17], led to the literate programming paradigm, a concept in which programs are
treated as works of literature. The idea behind this approach to programming

92-12 5

is that software (code, documentation, and associated data) can be made so
readable and interesting that it may actually be read for entertainment. If an

author has craft and style, and if a program does something interesting, or does

something in an interesting way, then the presentation to the reader can be
enjoyable, as well as enlightening.

Literate programs have an orientation and expression that differs from other

programs. The literate program is a special mixture of expository text that tells

the reader what the program does, how it does it, and why it does it that way.

Not by accident, it also tells the compiler how to build the program. Thus,

the program's documentation, code, and data are integrated and in one place,

possibly in a single computer file. They are created and maintained together as
a unit.

Unlike any other procedural programming language, WEB programmers are

not required to present the pieces of a program in any specific order. Rather,

they can be arranged in a natural order, which Knuth refers to as stream of
consciousness, and they can be organized into segments that accommodate the

needs of structured programming. Rather than developing "self-documenting
code," literate programmers create "self-coding documents."

WEB comprises two program utilities, WEAVE and TANOLE, which process the

literate source files and create, respectively, a document file to be processed by

TEX and a code file to be processed by a Pascal (or other) compiler. The details

of WEB and literate programming are described in Wayne Sewell's well-written

book, Weaving a Program: Literate Programming in WEB [18].

92-12 7

2 CONJUNCTIVE PROGRAMMING

This section describes an alternate to literate programming, a concept that I

call conjunctive programming, l Because it is simple, easy to learn, flexible, and

compatible with almost any documentation regimen, many may find it to be an

appealing and useful adjunct to literate programming.
The idea is not new. Like modularity and object-oriented methodology,

many may realize they have been doing something like it for years without

knowing that was what it was. While this report primarily treats generation

of conventional text-and-graphics types of documents, extensions to multimedia

and hypertext forms will be readily recognized. A hypermedia example of a

similar concept, called Intermedia appears in [10].

2.1 The Concept

In conjunctive programming, an object is any form of electronically accessible
information. A software system is comprised of the set of objects that define,

build, configure, and operate the system. These objects, therefore, contain

much (but rarely all) of the information needed to understand the system. This
information is current and accurate, because it is the real McCoy, not an artificial

surrogate maintained separately. It is a resource that can be used and reused
by excerpting appropriate portions into desired external documented forms.

The verb conjoin means [19] to unify and integrate separate entities together

for a common purpose. The adjective form conjunctive means connected,

conjoined, and composed of, or functioning as, a combination. Conjunctive

programming, then, is the assembling together of information excerpted from
real software artifacts, such as programs, items in accessible libraries, version-

specific configuration data, link-edit code, scripts, other documents, outputs

from other processors (e.g., structure analyzers, pseudocode systems, statistical

packages, etc.), and all other information required to create a document with
designated levels of detail, content, and production quality.

Producing a conjunctive program is somewhat similar to the "cut-and-paste"

process one exercises when writing a document using a text editor or word

processor on various sources of online data. It differs in that after an excerpt to

be reused has been located, it is not pasted directly into the document at that

time. Rather, a window to this excerpt is pasted into the conjunctive document

instead. The window is alive; if the excerpt changes, the view of it in the window

changes also. When the time to produce the target document finally arrives,

a software tool scans the source documen t, taking snapshots through all the

windows, replicating their current views.

The product of this process may be likened to a collage, in that it is an artis-

tic composition made of various diverse fragments of heterogeneous materials

lWaxning: Conjunctive literitis is a mental condition thought to be linked to the over-zeal-

ous devotion to this practice.

PRECEDING PPtGE BLANK NOT FILMED

8 92-12

assembled (glued) together. However, this analogy cannot be further extended
to describe the conjunctive programming process, for there is no listed adjective

form describing the collage-making activity. Coined terms such as "collage-

nous," "col]agenative," and "collageneric," seem awkward, contrived, and inad-

equate. It is true that "collage" can be used as a transitive verb, but it sounds

awkward to describe conjunctive programming as a process of "collaging" bits

and pieces of existing information together.

Conjunctive programming is a generic concept, specific instances of which

are defined by the environment of automated utilities that provide for acquiring,

editing, interrelating, integrating, navigating, and finally rendering the informa-

tion products. In concept, conjunctive programming does not require markup

tagging for these functions, but as a practical matter, it offers a great conve-

nience. Intermedia is an example of a highly integrated conjunctive program-

ming environment in which the actual linkage mechanisms are largely hidden
from user view. The degree to which conjunctive mechanisms are invisible within

a programming environment that capitalizes on the benefits they provide attests
the level of sophistication and utility of the environment.

But the use of conjunctive programming does not have to be restricted only

to highly integrated, grandiQse_en_irgnments. " Rather as i!lustratedqn this
report, it can be applied productively even in less sophisticated(rdatively het-

erogeneous environments.-Processors like _ and:)ts cl]aiects =provide a sig-

nificant portion of the mechanical advantage neede_d, permitting people with

ordinary text editors to produce high-qua!!ty, typeset documents. IbTEX and

A.AdS-TEX are powerful style adjuncts of TEX that help create and render ti-

tles, abstracts, tables of contents, numbered sections, footnotes, tables, figures,

indexes, cross-references, bibliographies, and citations. With TEX and DTEX

serving as its basis, an effective conjunctive programming environment addi-
tionally only requires a simple capability for recognizing and transcribing entity

references among software artifacts. Existing development tools, su_:h as file
analyzers, type font managers, special formatters, program tree plotters, cross-

reference generators, spelling checkers, thesauruses, and NAKE_ programs with

dependency files, can also augment the environment.

Conjunctive programming in TDX can produce the same superior document

quality as produced by literate programming in WEIL A TEX-based conjunctive

programming environment and information flow are illustrated in Figure 1.

The conjunctive programming approach to software development is differ-

ently oriented than that of literate programming, even though one hopes that

conjunctive programs can be equally literary in their final products. Conjunc-

tive programs, like literate programs, are displayed as interspersed narrative,

code, and data, printed in typeset quality. Actual source code, configuration

data, link and library directives, MAKE files, and the like, are all sewn together

_I4AIIE is a utility (from UNIX) for automated regeneration of artifacts that are dependent

on other artifacts, which may change from time to time.

92-12

Source

.¢Jn

File(s)

Data
File(s)

Program
File(s)

Co_t_'oia

Compile
and Link

l
Program(s) /

Figure 1: TEX-based Conjunctive Programming Information Flow.

into a format not unlike that of literate programs. The difference is that con-

junctive programming presumes that the code, data, documentation, and other

artifacts are maintained in separate, conventional forms that are then merged

into the integrated final form seen by the reader.

The practice of conjunctive programming may be pursued at different levels:

art, craft, discipline, or mere application. The art of conjunctive programming

exhibits conspicuous ingenuity and creative imagination, as may be manifested

by an engaging manner of description, innovative articulation, clever insights
and revelations, and curious mysteries for the reader to ponder and solve. Craft

is evidenced by technical accuracy, rigor, and expert workmanship. Conjunctive

programming discipline is the observance of orderly, sound, and systematic pro-

cesses which conform to recognized sets of rules, standards, or guidelines. The

mere practice of conjunctive programming does not, in itself, attest the level of
talent and skill that is at work.

Conjunctive programs contain linkages into real-world objects that may be

subject to a form of entropic degradation caused by evolutionary changes in the

system. As a practical matter, it is impossible either to prevent or counter this

degradation in a timely fashion without the cooperation of the individuals re-
sponsible for each linked-to object, or without elaborate automated linkage man-

agement, or both. Both require the use of markup standards, automatic recog-

10 92-12

nition of changes, and establishment of communications and coordinated actions

among the individuals and artifacts involved. The integrated Intermedia sys-

tem for maintenance of linkage information in hypermedia documentation is

discussed in [10].
Documents may suffer from incompleteness, inconsistency, noncurrency, and

asynchrony, if improperly written or maintained. Whether a program descrip-

tion is complete is perhaps more subjective in conjunctive programs than in

literate programs, because only the code segments deemed of interest may have
been abstracted into a conjunctive document, whereas the entire program must

appear in the literate program. On the other hand, conjunctive programs can

also be complete; they can also produce additional reports and papers about

selected algorithms, data structures, and the more essential aspects of the pro-

gram. Thus, conjunctive programming can either be equally elaborate as, or

considerably simpler than, conventional literate programming, at the whim (and

according to the resources) of the author.
Conjunctive programming allows freedom of expression for whatever good it

may inspire. It also serves those who must more rigorously conform to industry
or government standards. Certainly the tools of conjunctive progYamming are

capable of capturing and expressing far more literate examples of programming

than will be seen here. The fault lies not in the conjunctive programming

concept, nor with the use of the tools, but rather, as in all programming, in the
capability of the practitioner and the time resources available

Consistency is the degree to which artifacts are internally and externally free

from contradictions. Consistency conveys compatibility in content, style, and

terminology. One form of consistency relates to currency, which is the degree
to which the documentation correctly applies to the existing systern. Literate

programs are guaranteed to be Current in coding specifications by their construc-

tion. Parts of a literate program may be incorrect or in conflict, but these parts

always define the program totally, for better or for worse. Conjunctive programs

draw system information directly from the system database. Whether copied

completely or correctly, the objects conjoined are true reflections o_f what is in

the system. Automated updates of documentation using HAKE whenever system

changes are made will help to keep conjunctive programs current. The/?ozt.7oin

tool currently does not search for inconsistencies but will complain whenever

directives are inconsistent with the content of the artifact being accessed.

Synchrony is the degree of consistency between referenced portions of sys-
tem files and the contexts of the documents in which these excerpts appear.

If maintenance deletes a code segment previously excerpted into a document,

asynchrony appears as a "hole," or error, in the document context. If a pro-
gram modification erroneously moves an entity reference key, the code viewed

may not pertain to the document subject matter at that point. Synchronism of

document text and excerpted material requires robustness in the entity refer-

ence scheme and immunity to changes in the system. More about the creation

of robust entity reference keys appears later in this report, in Section 5.2.

92-12 11

2.2 Life Cycle Considerations

Conjunctive programming methodology need not be limited to the code devel-

opment and maintenance portions of the software life cycle. There is nothing

inherent in the conjunctive programming concept that restricts linkages only to

established portions of program code. Conjunctive programming can serve all

phases of the life cycle, because these involve separate, but highly interrelated,

products. Life cycle documents include project plans, work implementation

plans, statements of work, quality assurance plans, configuration management

plans, and various technical documents governing and resulting from the soft-

ware implementation. Each of these products may contain information that is
identical to, or closely related to, information in other products. Productiv-

ity and document currency are potentially improved by conjunctive methods

applied to the project artifacts.

For example, planning documents often refer to budget goals, obligations,
and actual costs; to schedule commitments, milestones, and accomplishments;

and to resource constraints, workforce loading, and facility utilization profiles

that are planned, monitored, and controlled. These resources are likely to be

tracked by a project management system and controlled by the corporate ac-

counting system. Conjunctively programmed project-planning documents can

access the actual controlling repositories for accurate and current information,

perhaps via interfacing tools.

Requirements documents commonly cite-and/or repeat material from gov-

erning and auxiliary documents, system documents, user manuals, interface

agreements, and results of analyses. Design documents cite material from the

governing system and interface requirements, user manuals, outputs of design

tools, program design analyzers, etc. All are ripe candidates for the conjunctive

approach.

Maintenance documents require detailed as-built design specifications, in-

cluding construction information in the form of code structure, 14AK_.files, linkage

edit instructions, batch scripts, software interface specifications, etc. Section 7

and the appendices give examples of the use of conjunctive programming to
record system implementation information.

Planning activities typically create test plans, requirements, criteria, proce-

dures, and test cases, which are set forth and agreed upon before testing actually

proceeds. Test results are commonly documented in various reports. Delivery

of software to a customer generally requires still more documentation in the

form of configuration audits, version descriptions, delivery conditions, instal-

lation plans and provisions, and maintenance agreements. Software sustaining

and maintenance activities involve implementation of system changes and the

maintenance of currency and synchrony among documentation elements and
the system components. Potentially, conjunctive methodology can reduce effort

and improve the quality of test documentation by reduction of redundancy and

maintenance of currency.

12 92-12

2.3 The Co_oin Program

The processing engine for conjunctive programs described in this report is

Conjoin , which, in its present form, is a considerably less grandiose and ad-

mittedly simpler tool than WEB or Intermedia. It is written inC, but could

probably have been implemented as an additional macro package incorporated

into TEX, had I been a more competent TEXnician. There may even be cut-

and-paste programs that are already available on the market that would have

saved me the trouble of writing the Cozbroin program altogether.

CorJoin requires only a minimal production environment: a text editor to
create code, data, and documents; TEX, for document production; and a com-

piler/linker, for translation to machine executable form. It replaces query direc-
tives in the conjunctive program file with text copied from other files. Location

criteria include the source file name plus either absolute locations within the

file, string contexts within the file, or relative locations from string contexts.

I had, at one time, thought of naming the conjunctive programming engine
stitch, because it belonged in the same genre of names as gEB, TANOLE, WEAVE,

and KNIT, the mainstays of literate programming. Conjunctive programming,
however, is far more than just the "stitching" together of software artifacts,

although that is precisely what the Co_7"oi_ tool does. As in literate program-

ming, the bulk of the effort is not spent in sewing, weaving, and knitting, but in

composition. It is with the trusty text editor that the conjunctive craftsperson

generates directives that sew extracted software and data elements into place,

and it is here that the conjunctive artisan creates the narrative and graphic logic,

justification, explanation, and other particulars that give tangibility, meaning,

and worth to the finished product. Neither literate programming nor conjunc-

tive programming can be characterized as word processing, even if that is where
most of the practitioner's time is spent. In order not to connote the mere me-

chanics of the tool, but rather the method to which it contributes, I chose the

name Co_?'o ira.

2.4 Impacts on Method and i_xpression

Conjunctive programming does impose a discipline on its practitioners. I re-

alized this while developing the Conjoin program. My original intent was to
provide a method of documentation that did not impact programming at all.

I initially wrote a small prototype of CoxOroin to assist simultaneous develop-

ment of code and documentation. Other features were appended later, as the

needs for them became known. Require m_entsfo r additional capabilities were
also recognized, some of which are discussed in Section 6.

After adding several features and modifications, I realized that synchr0niza-
tion between the conjunctive source and the accessed files is an essential need

of conjunctive programming that is still not yet adequately robust. The pro-

grammer is left responsible for creating and maintaining linkages between the

92-12 13

accessed code and other data files. No distinctive mechanisms that will be

resilient to later changes are automatically provided.

As Co,loin evolved, I realized that I was reworking parts of the program
that already correctly functioned merely so that I could explain more easily

how they operated. Just due to writing about it, the code was changing sig-

nificantly in structure, although not in function. Additionally, I found many

programming simplifications and subtle faults when describing the code. I thus

relearned that the way one presents and describes programs influences the way
one structures them. It is therefore not totally true that conjunctive program-

ming is completely flexible and conformable to every mode of programming.

Some adaptation within the practitioner inevitably takes place.

2.5 Goals

My reason for developing Co_Join was pragmatic. I generally document the

papers, reports, and programs I write using IbTEX. The style of these documents

appears very similar to that of this report. I had just completed a research

effort resulting in the development and concurrent documentation of a tool for

simulating the software reliability process [20]. In writing the documentation,

I manually cut and pasted segments of the code with a text editor into the

document. Keeping the document and the program code consistent was very

time-consuming and unproductive.
I needed something to extend the environment that I already had, and with

which I was familiar---something that would adapt to my method and manner

of expression. I did not want to learn another documentation system, nor did
I want to reinvent the wheel. I wanted to have the code and documentation

separate for ease of editing, compilation, debugging, and distribution. Having a

program such as Co_7oin would have served these needs and eliminated a great
deal of frustration and rework.

I began to apply CoqT"oin by using only string-context searching to locate
material for pasting into the document being written. I soon recognized the

need for more a robust entity reference method as changes were made in the

program. Slowly] began to introduce better anchors into the code, but only
as needed. Wherever I applied more robust markup principles, the excerpt

references proved to be more consistent. Elsewhere, I found that the extractions

proved to be more fragile to evolutionary changes in the artifacts. I am still

learning the effective means for generating robust, yet convenient, markup.

2.6 Relation to Literate Programming

Literate programs are literal programs; that is, the program source itself is

integrally bound within the document that describes it. Every operation and
every declaration, however trivial or minuscule, must appear in the document.

Literal programs are complete programs, even if narrative, tabular, and graphic

14 92-12

descriptions in the remainder of the document are incomplete, inaccurate, and

unintelligible. The code appearing in the program document is the actual code
that compiles and runs.

Conjunctive programs, on the other hand, do not necessarily document an

entire program, line by line. Those portions of code and other data that are

displayed within the document are actual and current, as in literate programs. A

MAKE program with dependency files maintains currency between the document
and the source elements. As in literate programs, descriptions of excerpted

system artifacts may be incomplete, inaccurate, and unintelligible.

Both literate and conjunctive programs are (ultimately) processed by TEX,

so they both generate documents of high typographic quality. They both permit
the creation of textbook-quality documents, when warranted. They both display

segments of code interspersed with explanatory text, figures, and tables. The

code you see in both documents is the actual program source code. The order

of appearance of code segments in both documents is independent of the order

in which these segments are presented to the compiler. Both have mechanisms

that maintain currency between the program that is seen in the document and

that which executes. Both are operated in an edit-compose-render sequence

of steps where editing may be interactive, but composition and rendering are
batch-mode processes.

Both currently suffer from a number of disadvantages, some of which are
technology related:

(1) Each is constrained by the limitations of the document processing system
and the program development environment.

(2) Both need better means for displaying figures and graphics, and neither

supports a graphics-based design methodology very well.

(3) Neither is oriented for WYSIWYG a operation. An interesting experiment

would be to adapt Cox0'oin for use in a WYSIWYG environment, such

as Ventura Publisher [21], which also uses a rather simple hidden-text

markup that is consistent with the CovJoin program design.

(4) Both have been applied only to traditional types of systems and products.
For large programs, document indexes, tables of contents, and lists of

figures may not be as useful as online documents with automated display,

search, and interaction tools. The current documentation trend is toward

distributed heterogeneous multimedia systems incorporating hypertext.

These problems can be overcome by enrichment of concepts, tools, and practices

that will take better advantage of the evolving technology.

Conjunctive programming may offer some advantage over traditional literate
programming in the following ways:

3What You See Is What You Get.

92-12 15

(1) It can adapt to the way people now develop systems. The order of code and
documentation development, the separateness of the artifacts produced by

these activities, and the content and level of document detail can be tai-

lored to project and individual needs and existing organizational standard

practices.

(2) It works conceptually with all programming languages that permit embed-

ded comments and document generators that allow hidden text. Devel-

opers already familiar with a documentation system do not have to learn

another system.

(3) It is applicable to retro-engineering efforts with no additional risk to the

system operation.

(4) It can be used to facilitate concurrent engineering and other forms of
collaborative activity, because it can make the documentation and other

products of all the teams accessible to everyone without requiring any

changes in existing software responsibilities. Programmers can be separate

from documentation personnel, and both can maintain cognizance over

their separate charges.

(5) It can be used throughout the life cycle, not only for program documen-

tation, but for all kinds of project artifacts that integrate information

from multiple sources. Markup standards and change notification proce-

dures can be made a regular adjunct to project implementation plans and

practices.

(6) It can use existing development environmental tools, such as symbolic in-

teractive debuggers, text editors, and program analyzers. Corffoin does

not have to duplicate the functions that commercially available tools al-

ready have, but may incorporate their results.

(7) It promotes reuse of existing code, data, and documentation. This reduces

"waste" in the Total Quality Management [22] sense.

(8) In cases where the copious display of code in a document is not required

or desired, conjunctive programming can just provide specifications, ex-

planation, and a bridge into the pertinent portions of code and data. For

example, maintenance personnel claim they prefer reading code in source

form once they have an understanding of the program, a road map into

the code, and access to explanatory documentation, when needed.

I can also see several disadvantages in conjunctive programming, among which
are

(1) There is no automatic assurance of completeness, when such is desired.

16 92-12

(2) There may be a loss of currency in documentation if program elements

change without reMAKEing the documentation.

(3) It does not promote structured design and structured programming as well

as literate programming.

(4) Coz/7oin does not automatically generate indexes and cross references, nor
does it automatically format the resulting document as well as WEB does.

92-12 17

3 USING Co_oin

A Co_roim program is a text file formatted for processing by a markup document

compiler or generator. As currently implemented, Cozi_roin programs produce

IATEX documents; other dialects of TEX, such as A A4,9-'I'EX and others, can
conceivably also be accommodated, although this has not yet been done. This

report was produced using I_TEX, augmented by additional style markup com-
mands particular to this report.

Nothing in the conjunctive programming concept mandates the use of TEX

or its dialects, but the power TEX provides to the conjunctive programmer offers

a considerable incentive. The Coq]oin program has been structured to adapt
to other TEX-like document-producing engines by run time markup directive

redeclarations and recompilable definitions. Adaptation to the UNIX troll

system or to Xerox's Ventura Publisher, for example, are possibilities for study.

TEX is used hereafter to illustrate the character of conjunctive programming as
(dis)colored by my own personal preferences, habits, and skills.

Currently, there are only two dependencies in Conjoin on TEX that are

not changeable via run time directives. These are the TEX comment-initiation

string, "Z", used by Cor6roin to initiate its directives, and \verbl teztl used to

enclose in line verbatim tezt. Such dependencies are localized in the program as
macros that can be redefined to the equivalent commands of another document-

generating engine.

8.1 The Source File(s)

The Co_oin tool copies a user's source file, assumed to be an ASCII text file,

line by line, directly into a target file. It is not essential that all the characters

in the text lines be printable characters, as long as a newline 4 appears regularly

within the maximum line length allocation. The lines are assumed primarily
to be made up of "regular text," or text that will be recognized and processed

by the documentation system (i.e., I_TEX in this report). In addition to this
regular text, there are 12 directives that are specially recognized and processed

by Conjoin. These all begin with the target-processor comment signal string (for

TEX , '°h"), so that the user source could conceivably be processed directly by

the target processor, except that none of the Cor6roin directives nor their effects

would appear in the compiled document. Rather, the user's source file directs

the integration of information segments from many heterogeneous sources into

a target file that is then processed by the target processor (TEX or IATEX, et
al.) in the normal fashion.

_The meaning of _ewline is generally implementation-defined. Some systems use a com-
bination of carriage return (CR) and line feed (LF) to mark the end of a line, while others
use LF/CR or just one or the other by itself, and some have other special conventions. This
need not be a problem, as long as the text editor, Cog.7oia, and the document generator all
recognize the same convention.

18 92-12

The length of text lines in the Coz_7oin source file is limited by the value of

the MAX_LTXE macro within Co_7oin program,

#define MAX_LINE 135

Each Co_oin directive, except %size, is copied intact into the target file.
Since these are formatted as comments, they will not be seen in the document

being created. Each directive, except Y,size, should appear on a separate line in

the source file, and may not exceed one line in length. The Y,size directive may

appear anywhere within ordinary text. The Co,loin directives are sensitive to

capital and lowercase alphabetic characters.

The directives in alphabetic order are:

• %access file_name break_string start_string range_separator end_string

• %break break_string

• _,colurm start column

• %count count_signal

• 7.garbage substitution_char

• 7.pa_h directory

• %postfix end_environment

• 7.prefix begin_environment

• 7.range range_separator

• 7.show(on I off }

• Y,size{ C [a [T I r}

• _,tabs tabwidth

Each of these is described in detail in this section. Path and file names used in

the examples are shown in MS-DOS style.

3.2 Selective Inclusion of Text Files: Zaccess

The workhorse of the Co_oin program is the %access directive that selectively

locates, copies, and formats text from files by using the environment set by the

7.prefix-Y, postfix pair. Most of the material displayed here in the TEX \1:1:
font was 7.aecess-ed from system objects.

92-12 19

For example, the definition of the constant BIL in the CoqToin program may

be printed by accessing the context of the #define statement,

7,access ConJoin.c, define NIL+O" I

(note that the character # does not precede define in the %access directive

because # is the default count signal, described later). CoqToin responds with
the result

#define NIL ((void *) O)

Conjoin supports three kinds of location markup tagging:

(1) by context (as above)

(2) by line position in the file

(3) by line position relative to a context

This markup recognition is not as general as that offered by a HyTime-compliant

engine, and may be augmented in future versions (see Section 6). CortToin can

find contextual keys in the system database, either occurring naturally or placed

there as anchors for more robust access. As a result of my using both approaches

in describing the Conjoin program in Section 7, I now recommend that users
embed unique, standardized anchors in the system database that will withstand

system evolution. However, all three reference schemes will be explained below.

The syntax of the directive is

%access filename break_string startstring range_separator endstring

The file_name identifies the name of the file in which the text segment to

be copied may be found. The break string is "," by default. The optional

start_string and end_string take the form

[match sfring] [count.signal count] [+offset]

In each case, the matchstring is a set of substrings, separated by break_string, of

characters to be matched exactly (case sensitive) within the named file, in order.

That is, matches for each substring are sought in the order given. Subsequently,
the offset is an integer number of lines past or before the string match condition.

The count, when present, is always considered positive and denotes the number

of matches necessary to start action. The default count is one. The number of

substrings is limited in number to

#define MAX_CONTEXT 10

If the starting match_string is missing, then the match condition is satisfied

at the beginning of the file. A default offset of unity is presumed if the starting
offset is missing. A unity offset causes all lines up to and including the matching

20 92-12

line of the named file to be skipped. Setting the offset to +0 prints the line

fulfilling the string match condition, and a positive starting offset of n causes n
lines in addition to the matched line, to be skipped.

Negative offsets are also permitted. Setting the beginning or ending offset
to -n causes the action to take place n lines before the fulfillment of the string

match condition. It is necessary, in this case, that Conjoin maintain a queue of

length n, which is limited in size to

#define MAX_Q 100

If the ending match_string is present, but the offset is missing, an offset value

of-1 is assumed. Cor0"oin stops copying at the line matching the match_string

condition in this case. Setting the ending offset to +0 causes the line fulfilling

the match_string condition to print.

If the ending matchstring is missing and the ending offset is non-positive

(the default when missing is -1), copying extends until offset lines prior to the
end-of-file. If the ending match_string is blank, but a positive offset is present,

that value specifies the number of lines that will be copied from the named file.

The + in a positive offset may be omitted when the match_string and count

fields are absent. The - in negative offsets must always appear.

The range separator default " between the beginning and ending extraction

keys above can be replaced, if desired, with a more convenient mark by using

the %range directive described later in Section 3.9. The countsignal default #

that signals the beginning of the count field may also be changed by using the
%count directive described in Section 3.5.

A typical usage of the Y,access directive is illustrated in the following:

Y.access Conjoln.c, * strext *+0 " * end strext *+0

which produces

/* strert */

strext(s, t) /* Kxtract string t up to the Close-count string, if close

is not null, or to the end of _ if null, into s. Rmove

leadi_ and trailin 8 blanks froa s and ret_'n s.
/, , --*/
$TItlIlG s, t;

{
$TKIIG p;

if (*close AID (p = strstr{t, close)))

strtcpy(s, t, p - t);

else

strcpy(s, t);

return stratria(s) ;

)
/* e_ etrext *I

92-12 21

As seen above, this usage copies all lines between the first occurrence of a line

containing the beginning markup anchor substring * strext * and the next

occurrence thereafter of a line containing the ending markup anchor substring

• end strext *, inclusively, into the target file. The result in the target file
is the source code for the strex*:() function shown below and explained more

fully later in Section 7.19.
Insertion of %access-linkages into the code in the form of distinctive com-

ments, such as * strext * and * end strext * above, brings a measure of
robustness that is not found with other contextual means of location. Synchro-

nization among conjoined files and %access directives is made more reliable

when separate markup is provided. Other means of text segment location, such

as by match count and offset, are much more fragile to changes in and move-
ment of code functions. Section 6 discusses po6sible future enhancements in

conjunctive programming tools that will promote further synchrony.

When the +0 oHset designations in both the beginning and ending search

strings are omitted, the result is

**

STIII|G

strext(s, t) /* Extract strin K t up to the close-coument strinK, i_ close

is not null, or to the end of t if null, into s. ILenove

leading and trailing blanks frost s and return s.

/. .. ./
STRIIIG s, t;

{
STRIJG p ;

if (.close lID (p - strstr(t, close)))

strtcpy(s, t, p - t);

else

strcpy(s, t);

retuxn stratr_Jn(S);

The file segment could have been displayed just as well by using a negative

beginning offset,

%access Conjoin.c, strext(#9 -2 " 16

or using an ending search string that stops 3 lines earlier than the next function-

header-line,

%access Conjoin.c, strext(#9 -2 " ***** #2 -3

because the strext() function appears on the ninth appearance of the name

in the program file. This method is not recommended, as it is very sensitive to

future changes in the program code.

Multiple substring context matches can also be specified as a means to avoid

ambiguity in locating a desired point in a file. As an example, the appear-

ance of ¢1ose in the code segment above can be located by first searching for

22 92-12

* strext *, then bypassing the appearances of close in the function descrip-

tion by looking for STRIIG p, and finally, by seeking the next appearance of
close. The 7.access directive is written

Y,access ConJoin.c, * sCrex¢ *, STRIIG p, close +0 " 1

which results in the single line

if (*close AND (p = strstr(t, close)))

Note: If a match_string contains either + or -, then it is necessary to apply

the countsignal so as not to mistake the sign character for the start of an offset

count. For example, to access only the function banner portion of the screxl:()

module, one could use

Y.access Conjoin.c, * strex¢ * " /*--- #1 +0

3.3 Setting the Context Separator: Zbreak

The default delimiter for file names and match_string in the _.access directive

is the comma character, ",'. This can be changed by using the directive

Y.br eak breakstring

The default is thus equivalent to the statement

Y,br e ak ,

The breakstring may contain any (non-null) characters, including embed-

ded white space, but any leading and trailing white space is removed. The

break_string and the range_separator must be different (for error detectability

reasons), and these must differ from the count_signal, ÷, -, and all characters
that appear in the match_strings.

3.4 Setting the Alignment Column: Zcolumn

If, at times, the Zaccess-selected text has too little or too much white space to

the left of the lines to be printed, an alternate starting column can be selected

by the directive

7,column start_column

The start_column may be positive (added spaces) or negative (deleted charac-

ters). The default starting column is zero, so the default is equivalent to the
directive Y,coltuma O.

As an example, the CozO'oin program contains a code segment that appears
in the Conjoin. c file as

if (10T (txqueu*[q*x] = strdup(t*xt)))

{ error_lmssage(l(]_lllRy_Eltlt, "", FALSE) ;

error • TRUE;

92-12 23

b_eak;

}

Using a Zcolumn -16 directive causes the output to take the form

if C10T (txqueue[qex] = strdupCtex_)))

{ error_nessage(H_qO]t¥.EK]t, "", FALSE) ;

error = TRUE;

break;

)

The alignment column remains in effect until reset by another %column directive.

3.5 Specifying the String Match Count Signal: Zcount

The beginning and ending Y,access string matching specifications may, at times,
themselves contain the default match-count-signal, #. In such cases, the match

count signal may be changed by using the Zcount directive

Xcount count signal

The default is thus equivalent to

_couat #

The breakstring and the range_separator must be different (for error detectabil-

ity reasons), and these must differ from the count_signal, +, -, and all characters

that appear in the match_strings.
Examples of the use of the count_signal appeared earlier, in Section 3.2.

3.6 Conversion of Non-Compilable Characters: Xgarbage

Text files occasionally contain non-ASCII characters (such as those of the IBM
character graphics set) that cannot be printed by the target processor. Ir_ such

cases, CorJoin makes a substitution. All non-printable characters are replaced

by a "garbage" character, which by default is #. This default can be changed

by using the directive

Xglrbage substitution_character

The substitution character remains in effect until reassigned by a later _gaxbage
directive. If no substitution character is named, no substitution is made. No

provision is currently available in CoztToia for character translation other than

this simple indication of where non-printable characters have been encountered.
The default is equivalent to

Y.gaxbage #

As an example, all the files describing and comprising CoqToin contain a

copyright header that contains graphic characters recognized by most IBM-

compatible printers, but not by TEX. When CoztToin-ed, this banner appears

24 92-12

%888###||||###|8#|||####|#||###|#M|8#$##|#|88#$###$#|#H||##_###||||##|##

%# •

%# Copyr_ht (C) 1992, Cali_ornia lnetiSuts o_ Technolog]r •

%# All rights reserved. U. S. Gover_nnt sponsorship under |ASA •

_S Contract |&S7-918 is acknowledged. •

%# •

_1 Robert C. Tausuorthe •

7,1 Jet Propulslon Laboratory •

_,I 4800 Oak Grove Drive •

_,I Pasadena, Ca 91109-8099 •

%1 •

%1 •

_11111811

When viewed by a text editor or as a direct-dump printout, the garbage
acters above form a double-line box around the notice.

char-

3.7 Setting File Search Paths: Zpath

When text segments to be accessed are in a directory other than the current

default path, or if segments are to be copied from files in several directories,

these paths may be identified by using the Zpath directive,

Zpath directory

Paths remain in effect throughout the remainder of theCoxO'oin file.

Any number of path directives may appear, up to the maximum number

defined in the CoxlToin program, currently

#define MUMBER_0F_PATHS 20

The benefitsof the %path directiveare that itsusage can help make doc-

ument filesmore portable and adaptable to multipleplatforms,permitting lo-

calizat_i0nand concentrationofsearchdir_cct0r_yspecifications,thereby reducing

the sensitivityof the document to path-naming conventions. Furthermore, it

alsosh_rtennsfilenames appearing]n_Z_Ss directives.

An example ofthe %path directiveusage isthe following:Severalfunctions

accessed by the CoztToinprogram are located in a separatelycompiled library

for which the source code happens to be available.This code appears in the

directory\c\topc\c, which, as one may easilyguess,refersto "Tausworthe's

Own Personal C" library(TOP-C).

%access \c\'copc\c\stra_crim.c, *****+0 "

Alternately, one may use a Zpath statement to identify the library directory,

_,pat h \c\1;opckc\

_,access stratrim.c, *****+0 "

Note that the final directory separator (here, \) is necessary in the Zpath state-

ment, as path strings are directly concatenated with the accessed file name in

searching for the file.

92-12 25

Either of these two alternative forms transcribes the same file segment into

the target document:

/0.*.4.**$ ***********4_404.4***.0 o,$**,4$*4*******4ee***e*4eeeee4eee**e**/

STR'rlG

straitS(s) /* Tr_a all white spaco from so leading and trailing, and

then return s.

I, .. .I
STRIIG s;

(
FAST STRI|G p;

p = sZrfnb(s) ;

strtcpyCs, p, strlenCp));

return strtrim(s) ;

3.8 Setting the Environment: Y.prefix and Y.postfix

The environment for printing the text selected by the %access directive is con-

trolled by %prefix and %postfix directives:

%prefix begin_environment

_,posl;fix end_environment

where the beginning and ending environment portions of the directives are

target-processor commands that set up and terminate the environment for print-

ing %aeeess-ed text. The defaults are equivalent to the following directives,

which enclose the I_TEX verbal;i- environment:

Y.prefix (\footnotesize \begin{verbat_n}
%postfix \end(verbatim_}

These defaults print the intervening text by using the \':'c font, sized small

enough that an 80-character line fits into the width of a printed page. Lines

appear in the output document exactly as they do in the text file. Coz[iroin does

not perform "pretty printing" of the selected text. The regular font style and

size environment are restored by the %postfix statement.

Selected beginning and ending environment statements stay in effect until
changed.

3.9 Defining the Access Selection Separator: Y,range

The default " separator appearing in the description of the 7,access directive

above may not always be effective to use, such as when a desired starting
matchstring contains a " character. The default may be overridden by the
directive

7,range range_separator

All leading and trailing white space in the range separator are discarded by

26 92-12

Covffoin. The range_separator remains in effect until changed by another Y,range
directive. The default is equivalent to

Y_ang • "

The break_string and the range separator must be different (for error detectabil-

ity reasons), and these must differ from the countsignal, +, -, and all characters

that appear in the match strings.

3.10 Displaying the COl_Oin Directives: _,show

Co11%oin directives, except _size, can be displayed in the target document by

using the Y.show directive,

Y.show{ on I off }

When on, each occurrence of a Corffo_ directive is made visible in the target

output file. The action of the directive takes effect immediately.

The directives used to display the h'UMBEROF_PATItS definition in Section 3.7,

for example, were

7.show on

Y.columu 8

Y.prefix {\begin{verbatim_

7.access ConJoin.c, NUMBER_OF_PATHS+O - I

#define NUMBER_OF_PATHS 20

_column 0

_prefix {\footno%esize \begin{verbatim}

_show off

The display setting persists until reversed by another _show directive. The

default is equivalent to

Xshow off

3.11 Displaying File Sizes: Y.size

Each time CoqT"oin is run, a file having the same name as the target file, but

with a . siz file type, is written that tells the total numbers of lines

(i) in the Conjunctive program source file

(2) transcribed into the target file by 7,_access directives

(3) written to the Target file

(4) the ratio of the latter two

92-12 27

These numbers are available via 7.size directive, which may appear anywhere

within a line being processed. The syntax is

7,size _:C I a J T I r :}

The options, C, a, T, and r may appear either +capitalized or uncapitalized and,

respectively, correspond to the four items above. Since the items refer to the
sizes of the file when it was last processed, there may be an error if the number

of lines has changed. To avert this possibility, Co_Toin should be run at least

twice before processing by TEX.

As an example, %size is used four times in the following sentence where

underlined: The last time Conjoin processed the CJ_body. CJn file, it contained

3159 lines, which transcribed 1184 lines from other files into the target file, to

produce a total of 4351 lines in the target file. The extra 8 lines in the target file
over its constituents is an identification banner, described later in Section 7.15.

The ratio of transcribed-to-total lines is 0.272.

3.12 Altering the TAB Width: 7.tabs

By default, tab characters in the %access-selected file are expanded to align
text on columns 8 characters wide. This default may be overridden by using

the %tabs directive,

_tabs tab_width

The default is thus equivalent to

%tabs 8

The TOP-C library function strtcpy() with 7.tabs 4 in effect displays as

/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$@@@$$$$$$$$eeeeeeee$$eeSeSeeeeseee$$$$/

STKIlfl

strtcpy(s, t, n) /* Truncated string copy. Copy at •ost n CHARs

of t into s, and return s. lore: in contrast

to strncpyO, the returned copied s s/gays ends

in NUL.

/. .. */
STRING s ;

co•st STRIIG t ;

size_t n;

(
size_t •;

if (s)

{ • = strlenCt);

n = Rig(n, •);

Muove(s, t, n);

*(s + n) = IIUL;

}
return s ;

28 92-12

The same code with the default _,tabs 8 in effect appears later in Section 8.7

for comparison.
The tab width remains in effect until altered by another Y.tabs directive.

93-12 29

4 INSTALLING AND RUNNING Co oin

This section describes how to run CoxIToin on the IBM Personal Computer,

or compatible. It does not explain how to run either TEX or laTEX or the C

compiler. It is assumed that user guides are available for these and that the
user is already familiar with their operation. To date, Cox0'oin has only been

implemented for the IBM PC; however, the program is written in ANSI standard

C, except for a few routines that have been accessed from my TOP-C library,

which are included in a separate source file on the product disk.

4.1 Configuration

The Co_¢7"oin system described in this report requires the following environment:

(1) An IBM Personal Computer, or compatible device with at least 128 kilo-

bytes of available RAM for execution and utilizing the MS-DOS operating

system Version 3.1 or later.

(2) About 100 kilobytes of available disk or diskette space for system storage.
Disk storage is preferred, and the system has not been tested for floppy

diskette operation. Installation in the next section is limited to hard-disk

configurations.

(3) TEX and laTEX (or other publishing system), text editor, and other doc-
umentation tools, with the peripherals and storage they require.

(4) If modifications of the system are to be made, a text editor, C compiler,
and linker. The .bat and .mak files provided on the product disk are

configured for Microsoft C 5.1, and for my directory structure and devel-

opment system. These may have to be edited to conform to other compil-
ers and user environments. Additionally, the top.c functions should be

appended to the ConJoin.c file prior to compilation. See Section 9 for

more information on program modifications.

4.2 Installation

The steps for installing the Con,Toin system are:

(1) Create a (preferably separate) subdirectory, such as \conjoin, and make

this the default directory:

>md \conjoin

>cd \conjoin

(2) Copy all the files from the distribution medium into this directory. For

example, if the distribution is a disk in drive a:, then

>copy a:*.*

3O 92-12

(3) Invoke Cor_oin with no parameters to see the usage message:

#S#8|#####88|•#:888H8|###$|$:8|##:8888#•#S##$#||_I_||##_##8_8_•88 ||8•|•###

• #

• Cop_ight (C) 1992. California _titute of Technolo_r l

£11 rights reserved. U. S. Government sponsorship under •ISA

Contract IIIS7-918 is acknoeledged.

• Robert C. Tausgortbe •

• Jet Propulsion Laboratory •
• 4800 0-1, Grove Drive •

• Puadou, CA 91109-8099 •

• 8

#8###0088888##|#|gl###||_#||##|||##|8##sg8||###|##gJg•88#|######e##eeee_l_e

ConJoin Progrms

(08-Apr-1992)

Usage: ConJoin <ConJoin source> <tizget file> [<options>]

Source file tyl)e default is .CJn

Target file tTpe default is .TeZ

Options:

-a Do not announce the pro_u.
Command line error: |o source file named.

This, or a similar message also appears whenever Coq_oin detects a con-

dition under which it cannot proceed further.

4.3 Running Co_roin

There may be differences in running CoqT"oin , even on the IBM PC, or com-
patible, primarily in how execution is initiated and how files are specified. The

description here outlines the operation in batch mode. Once Co_ffoin is initiated,

it reads its input files and writes its output file untii completion. Selection of

the files is made on the command line at the DOS prompt. Some implementa-

tions may have menu- or window-based user interfaces that alter this procedure
somewhat. The user is expected to know how to create the equivalent of a DOS

Command invoking Co_oin and Specifying its input, outputl and options within
the user interface of the platform involved.

(1) File naming. The DOS operating system locates files by subdirectory

"path" and by "file name" and "file type" (or "extension") within a di-

rectory. The user is expected to understand these general conventions, as

they are not further explained here. Files input to and output by CoqToin
may be specified to have any subdirectory, name, and type. A missing

92-12 31

(2)

J

type in the input file specification defaults to .CJn; a missing output file

type specification defaults to .Tol. Co_roia creates a file with the same

directory and name, but with type .siz that contains processing size

information (see Section 3.11 for further information on access to this in-

formation). Cor_oLa also saves the previous output file, if one existed, by

giving it a .T_X extension and removing the old . T_X file.

Building source (text) files. The generation of a TEX conjunctive pro-

gram is almost the same as writing any other TEX document, except that
when information from a system data file is needed, or if the information

to be accessed is to appear in a modified format in the resulting document,

then at these points, Coz_'oin directives are used as heretofore described.

To ensure that material be more easily or more robustly transcribed, the

user may edit the source file to insert entity reference markup in the form of

comments. Entity reference markup considerations are discussed further
in Section 5.

(3) Execution. While Coz'L7"oiamay be operated from any directory as long
as fully qualified path names are used to locate Co_¢7"oin, source, and target

files, it is generally more convenient to change the default directory to that

in which the files are found,

>¢d path

Then invoke Corffoin to process each conjunctive program by using

>c :\conjoin\conjoin options source target

The options may appear anywhere within the invocation, but the source

must precede the target designation. The source must always be present,

but options and target are optional.

If target is omitted, a default name is generated by using the source name,
but changing the file type to .TeX (current default).

Only one option currently exists: -a, which causes the JPL/Caltech copy-

right announcement, program name, and version date to be omitted. Pos-
sible future options are described in Section 6.

92-12 33

5 FURTHER CONSIDERATIONS

The continual, elaborate, and extensive flow of electronic documents within and

throughout industry, universities, and government agencies has created version,
review, revision, and currency problems for nearly everyone involved. Authors

often create multiple versions of a document for different purposes (full report,

literature paper, executive summary, etc.), to be communicated broadly and
to be viewed via e-mall, printout, video, and typeset media. When comments

and responses received from multiple sources must be matched to the versions
reviewed, all the information communicated must be managed in an orderly

way. This section discusses three areas where care and thought must be applied

in the conjunctive documentation life cycle: organization, linkage markup, and

retro-engineering. I deem these areas important because of the lessons I learned

in developing this report.

5.1 Document Organization

This publication, in its current form, is the integration of many files conjoined

for TEX processing. The top-level master document file shown in Appendix B.1

controls the integration of the many separate, constituent components that make
up the report. Appendix B.3 shows how the call-tree of Appendix C.1 and the

reference list of Appendix C.2 are made each time the ConJoin.c program

changes. The document MAKE file in Appendix B.6 directs the generation of
the program size file, the translation of .CJn forms into TEX files, and the

subsequent production of the report by TEX.

The report structure is formed as it is because other documents are, or are

planned to be, constructed from the same baseline files by inclusion, exclusion,
and Zaccess. The markup and composition techniques that have been employed

did not originate with this aim in mind, however, and for lack of my attention,

do not yet entirely fulfill this goal. Some rules for promoting currency and
synchrony have been relearned and reappreciated during the writing of this

report:

(1) Design the documentation using object-oriented concepts. Organize ma-
terial into separate, cohesive objects. Establish classes of items within the

system that will promote stability of products during an evolutionary life

cycle. Access entire objects to the extent feasible.

(2) Plan to develop separate volumes of product documents from a common

database of information from the beginning. Design the documentation,

code, and data schemata to accommodate multiple views (subschemata)

of product documents.

(3) Separate document style design from document content design..

PRE_c.DhNG P._C.,E BLANK NOT FILMED

34 92-12

(4)

(5)

(6)

Use aliases in source documents that will substitute application-specific

expressions in output documents. Localize the definitions of aliases into
a separate object for that application. In particular, use aliases for all

"magic numbers," or arbitrary constants that might eventually change
over time or across documents. As an example, a I_TEX command \work

was created to denote the current document type, here "report." Every

appearance of the word report in this document traces to an appearance
of \uork in the source file.

Use syntactic and semantic location mechanisms to refer to internal doc-

ument structural entities (sections, subsections, bibliographic citations,

etc.), rather than absolute positional information.

Use standard document types, outlines, and templates, when available.

This often prevents having to "reinvent the wheel" when designing the

documents in a new project.

5.2 Entity Reference Linkages

The successful evolution of conjunctive programs hinges on the query techniques

used to access information from system code and data media. All conjunctive

programming engines must support persistent tagging of information for query.

(In hypertext and HyTime, linkage tags are called anchors.) Code units to be

located by queries range in hierarchy from directories, to files, to functions or
declarations within files, to clauses within them, to statements or lines within

clauses, and finally, to atomic units (numbers, words, or other tokens). Similar

hierarchies apply to other forms of information. Synchronism between copied
information and the document context tends to decrease as the granularity

increases. That is, the content of 4 lines of text starting at the first occurrence

of the token "5" in a particular file is apt to be much more contextually variable

than is, say, an entire function. It is true that the function may change over

time, but the document context probably still concerns that function, whereas

the mere change of an earlier parameter value from 4 to 5 in the former case

completely destroys the correspondence between the code and the document

context.

Queries may be made by using absolute or relative locations, contextual

information, semantic content, or a combination of these.

Linkages to items in an information base may be made on the basis of abso-
lute and relative locations, context, and semantic content, in order of increasing

robustness. Each form of link requires some form of query processing. For

absolute and relative locations, mere counting suffices. In the case of context

queries, string matching or pattern recognition may be applied. Searching for
semantic content requires a system capable of interpreting the data it encoun-

ters. CorgToin accommodates the first two types of linkages in the form of an

92-12 35

absolute count of sequences of matched patterns followedby relativecount of

lines.

Linkages to textualitems can be made purely on the basisof locationand

context information alone ifdesired.However, the use of distinctivemarkings

within the data purelyforthe purpose ofestablishingsuch linkagescan produce

a much more robust synchronizationbetween the referencedinformation and

the document context.Insertinglinkagetagsincode and data filesmay require

agreements with the owners and/or managers of those objects. However, the

minimal extra effortrequiredduring implementation to insertthese marks may

yielda significantpayoffin documentation productivitylater.

Plans for making robust linkagesshould be consideredearlyin the product

lifecycle.Projectsor cognizantindividualsmay need to develop standard con-

ventionsfor linkagemarkup, or may apply standards,ifavailable.The tagging

should be distinctiveand recognizableas linkagemarkup. Itshould have both

beginning and ending delimiters(theseare usefulforlocation,modification,and

removal, when needed).

Cohesive segments should he tagged whenever itislikelythat access will

be made and locationby the surrounding context isunreliable.In data where

embedded markup isdisallowed,such as in data managed by a database man-

agement system (DBMS), other provisionsmay have to be made. For example,

preprocessingthe informationusing queriesto a DBMS may be necessary.Al-

ternatively,entityreferencetagsmay be put intoan auxiliaryfileand separately

accessed via a speciallinkageengine.

Robust markup works in both directions.Besides helping to synchronize

working filesand documentation, recognizablelinkageshelp during maintenance

inlocatingallthe placesinthe documentation where descriptionsofinformation

may be accessed.When code changes,forexample, the linkageprovidescluesfor

findingthe corresponding narrative.Without recognizablemarkup, one isleft

with a somewhat more difficultsearch. When changes are made in a program

file,one must searchthrough all.CJn filesforZaccess-es bearingthe alteredfile

name. Then, in those files,one must look forcontextsconsistentwith material

that was in the filebeforethe changes took place. Some of thismay be made

easierby a utilityprogram to print filedifferences,as a guide to where the

changed areas are,and a utilityprogram to traceZaccess conditionsintothe

code to check whether the range intersectsone of the changed areas.

With distinctive linkage tags, however, one need only search for Zaccess-es
to the changed files bearing the matching tags in the areas of change.

I had been working on the concept of conjunctive programming and the de-

sign of Confloin for some time when the HyTime article appeared in the Commn-

nications of the ACM [8]. I recalled while reading it that I had earlier reviewed

a draft of the proposed Standard Generalized Markup Language for _PL a few

years before and had since forgotten all about it. The ACM article made me

suddenly realize that conjunctive programming is part of a much wider data

interoperability discipline, one for which standards are emerging into practice.

36 92-12

Future work in conjunctive programming should investigate the use of the inter-

national standard for SGML [9] in conjunctive programs and augment CortToin

accordingly.

5.3 Retro-Engineering

The terms "retro-engineering," "reverse-engineering," and "re-engineering" have

been assigned slightly different meanings by researchers and others, but those
terms generally refer to efforts to redevelop quality attributes within existing

products after they have been implemented. I will not distinguish among the

subtle differences here. The process is one that involves recovering or improving

the design and translating, restructuring, or augmenting the program code.

Tools exist in some environments to create portions of the new documentation--

in narrative and diagrams--directly from scanning the code, while other tools

assist in converting the code into required forms. Documentation educed from

source code does not generate any new information about the code, although it

may present data about the code in a more human-understandable form. Code
translation can be slow, error-prone, inefficient, and costly.

Problems in retro-engineering tend to fall into one of the following areas:

(1) Implementation bias--recovery of general design information, rather than

language and system considerations, from available information, is difficult
and requires careful analysis.

(2) Traceability--links between recovered information and original sources is

needed for tracking completeness, consistency, and fulfi|lment of objec-
tives.

(3) Domain knowledge--the purpose, precision, range of values, rationale, the-

oretical basis, and significance of entities are missing and must be recre-
ated.

(4) Code correctness latent faults may be duplicated into the re-engineered
products.

(5) Information credibility--defective comments and documents may be used

to re-engineer products, and faults in the code may make documentation

untrustworthy.

The toolsavailableforretro-engineeringare generallythe same as thosethat

support forward engineering.They can produce data flowdiagrarrm,controlflow

diagrams, structurecharts,data structurediagrams, entity-relationdiagrams,

state-transitiondiagrams, and onlinedictionaries,and they can produce doc-

uments, analyses,and measurements. However, even though effortsmay be

significantlyassistedby the use of automated tools,retro-engineeringremains

92-12 37

largely a human task of supplying information, structure, and capability not

otherwise derivable from existing products.

Conjunctive programming can be useful in generating traceability links,

recording recovered design and domain knowledge, conjoining appropriate por-

tions of original and newly developed artifacts, and preparing the documents

required. It can contribute to productivity by recording the recovered design by

using media specifically developed for handling documents and linkages among
information entities. Conjunctive programming should be particularly effective

in efforts involving redocumentation only, because existing artifacts may not
have to be altered at all.

92-12 39

6 FUTURE USAGE ENHANCEMENTS

The simple capabilities of Co_'o:i.n discussed in Section 3 merely hint at the
utility of tools in support of conjunctive programming. The present section
discusses additional features and tools that may be developed if the CoztToin

prototype is successful in garnering the attention of users at JPL or in NASA,

other government agencies, or industry. The order in which these, or other

functions suggested by users are developed, will be dictated by the needs of users,
development costs, and availability of resources. Estimated effort for making the

changes below also includes resources for review, test, and documentation. Costs

estimated as "minimal" are expected to require a maximum of one workweek of
effort.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

A directive that is the same as Y,access, but which does not insert prefix

and postfix strings: Y.uae. This capability is available currently in Cozi_7'oLa,

but is awkward, because the prefix and postfix must be hulled before and

reset after using _access. Cost: minimal, a few lines of code and 2

subsections of user-guide documentation.

Provisions to permit matching leading and/or trailing blanks of entity

reference strings. Cost: minimal, a few lines of code and alterations in the

user's guide.

Directives Y.open and Y.close to change comment delimiter strings. Cost:

minimal, a few lines of code plus a new section added to the user's guide.

Directives Y.preshow and Y.postshow to alter in-line verbatim command

prefix and postfix strings. Cost: minimal, a few lines of added code and a

new section added to the user's guide.

A none option for the Y,show directive to prevent the copying of CoxtToin

directives into the target file. Cost: minimal, a few lines of code and a

short addition to the user's guide.

A directive Y,±gnore on I off, or other such means to disable a directive

without having to delete it. Cost: probably minimal, with only a few

changes to Corffoin and user documentation, but some thought must be

given to scope, exact syntax, and selection of ignored items.

Directives and command-line options to change all defaults, with an option

to read command-line arguments from a file. Cost: minimal, a few lines

of code each and a few corresponding changes to the user's guide.

Directives for selective access to contents: directives, such as Y.:i.ncludeif

condition or _excludeif condition. Details on just how this should func-

tion must be worked out, especially with respect to the form of the logical

condition. Cost: unknown, but probably could be completed in less than

PREeEDING P,_1H3E BLANK NOT FILMED

4O 92-12

three workweeks, one to work out details, one to make the changes, and

one to develop the user's guide material, if they prove to be useful and

feasible.

(9) Extension of the Y,size directive to permit access to other . s'iz files. Cost:
unknown, but probably would require two workweeks, to work out details,

develop code changes, and amend user's guide material.

(10) A means to reinstate initial defaults. Cost: minimal, a few lines of code,

plus minor additions to the user's guide.

(11) Capability to push prefix/postfix pairs on a stack and to pop the stack
back to a previous environment: or to define multiple environments. Cost:

unknown, but probably would require less than 2 workweeks to work out

details, develop code changes, and amend user documentation.

(12) Better execution efficiency through slight algorithmic changes, such as re-

taining open files to be accessed again, better pattern searching than from

the beginning of the file each time, and creating variables to replace the
various reevaluations of strlen(xx_SIGNAL) that appear throughout the

program. Cost: unknown, but incremental improvements would probably

require less than 2 workweeks each.

(13) Improvement of program tolerance to changes by improving the cohesive-
hess of functions and the removal of side effects. Some candidates are

discussed in the Internal Operations Section, below. Cost: unknown, re-

quires a more thorough evaluation of likely maintenance traffic.

(14) Means for conjoining nested accessed files to an arbitrary depth. Cur-
rently, only one level of conjunctive commands is accommodated. This
feature would permit text segments accessed by Cor/7oin to contain fur-

ther ¢orc]oin directives. Cost: unknown, but would probably require less
than 2 workweeks.

(15) Directives to access the date and time stamps of files, an d to make deci-
sions based on these. Cost: unknown, requires more refinement of func-

tional requirements.

(16) Command line options to set all Co_7oin defaults. A command line option

to input all options from a file; an option and directive to prevent Co_Join
directives from being copied into the .TeX file. Cost: minimal, only a few

lines of code and minor changes and additions to the user's guide.

(17) Extensions to accommodate other document-producingsystems, such as
Ventura Publisher, and others. Cost: unknown, some study will be re-

quired, but probably would require less than 3 workweeks, if feasible.

92-12 41

(18) A more integrated system of tools that would permit automated generation

and maintenance of anchors and linkages, as in [10]. Cost: comparatively

high, as initial acquisition costs of such a system are unknown.

(19) A linkage manager that automatically registers the usage of conjoined

segments of files and oversees the maintenance of anchors and objects
within files.

The progression from a simple tool, such as Co_oin, to the ideal conjunctive

programming environment would require a more formal systems engineering ef-

fort and a significant commitment of programming resources. Cost-effectiveness

would probably be reached far short of the ideal system, after having acquired

a set of tools that bridge the major difficulties in document creation and main-
tenance. Some useful auxiliary tools that come to mind include

(1) A coverage analyzer to assess the degree of completeness with which the

conjoined document describes an entire program or set of programs.

(2) A markup tagger with features for automatically generating robust entity

reference anchors within programs and other files.

(3) A tool to analyze programs and other files and to generate candidate

linkages that should be made within a conjunctive program.

Additionally, future efforts may convert the Cot/7"ota system database into a

form conforming to SGML and HyTime standards or to integrate with hypertext
systems, such as Intermedia.

92-12 43

7 INTERNAL OPERATIONS

This section describes the Cozt_oin program in a form as literate as is possible

for me to produce in normal documentation time. The goal in normal documen-
tation time is not necessarily to be literate, but descriptive and communicative

to an audience with assumed skills and levels of expertise. In describing the

program below, I have assumed that the reader is familiar with the ANSI stan-

dard C language and its library functions. I will not explain the C statements

nor the ANSI library functions, aside from their roles in the CorJoin program,

when noteworthy.

The Coq_7oin program itself does not currently fully conform to the SGML

markup standards but does align with their goals.

It is difficult without referees to know how much explanation is necessary for

describing a program, even to an assumed audience, particularly one as short

as this, having only 977 lines 5 of code. Is it necessary, for example, to tell

a programmer why a C program includes stdde_.h? Every C programmer is

familiar with this header file and more likely has to be told if and why it has

been left out, rather than why it has been included. Understanding what a

program does and how it does it generally requires less information than the

literate program, which must document every detail of compilable matter.

However, for maintenance and reuse, it is necessary to know what use is

being made of all information given to the compiler. For example, the Coq_roin
program at one time during its development referred to IIIT_I_AX, a value de-

fined in limits.h. A subsequent design improvement deleted that reference,

whereupon it was possible to remove the corresponding #include statement

from the code. Neither reader understanding of the functions and algorithms

nor the computer performance was impaired by the unneeded #Laclude in the

program. Nevertheless, it was superfluous, outdated, and proper for exorcism

by the attentive maintenance programmer (viz., me).

In the remainder of this report I shall attempt to describe what I think a

reader fluent in ANSI C should know in order to understand precisely what the

Co_Join program does, how it does it, and why it was constructed as it was.

My particular manner of expression will be evident throughout the program.

Although certainly influenced by the Plum Hall standards [23] of the early 1980s,
my own style has evolved into a fairly consistent, somewhat distinctive set of

practices and habits summarized below. Some may find fault with the form

and composition, others will not. Practically all will notice, however, that it is

distinctive. Whether this style would be effective if used by others is unknown.

A bibliography of research in programming style appears in [24].

The point is that conjunctive programming and Co_oin have permitted

STiffs number was _access-ed from a File e2_prog.s/z using empty prefix and postfix

strings (i.e., in a non-verbatim mode). The file was written by a utility program x'q.iatu that

scans the CorffoLr_ program and records its length whenever CoqToJat changes. This occurs

automatically, directed by a_ke.

PRE(_EDING P.eIGE BLANK NOT FILMED

44 92-12

me to express myself in text and in code in the way I wanted6--for better or

worse. The way I indent code in the source files is the way it appears here.

Tortuously convoluted operations that appear nested within C if-constructions

and elsewhere reflect the way that I think in code. I need documentation to

help me after a while to unravel the intricacies of expression and to recall what I

must have been thinking at that time--to revive the latent intellectual character

of what would otherwise appear to be cryptic.

As algorithms go, none in CoxIy'oin is particularly curious. In fact, every

function seems perfectly straightforward--except for a few subtleties here and

there that I hope will be clarified. My optimism is probably natural, since I

have just recently written the program and it is still fresh in my mind. To
become more sensitive to what this report should have contained, but does not,

I will need feedback from others and an opportunity to redo it in a year or so,

to provide the rationMe now seemingly too obvious to be mentioned (but which

will likely be evident by then), to correct misstatements, to include informative
material obtained after publication, and of course, to update the narrative with

descriptions of new and altered features.
The degree to which the reader comprehends this report will measure the

extent to which I have been successful in attaining my goals using conjunctive

programming. Insofar as those goals have eluded me, I hope the reader will find

the concepts and approach informative, or at least curious.

The code for Cort_roin is contained in the file ConJoin. ¢, and is listed fully

in Appendix A. The program displayed in this report should be viewed as
the internal JPL prototype to illustrate conjunctive programming. Some of the

enhancements discussed in Section 6 will probably appear in versions eventually

released for wider usage.

7.1 A Word on Programming Style

This section is included not to defend my programmingstyle but to explain

what will be seen. The normal order of items in one of my program files is

(1) Program header, with version, file name, copyright, and author declara-
tions.

(2) Header files, in orderas applicable: ANSI standard headers, ANSI-confor-

mal library and macro headers, special system library and macro headers,

and, lastly, system-dependent library and macro headers.

(3) Local macro definitions, if any.

(4) Global function prototypes not contained in include-files, if any.

(5) Global data structures, if any.

6This is not so surprising, since I developed Coq.:7oi=to do what I wanted. Hopefully,

however. I have made it general enough to permit others this same freedom.

92-12 45

(6) Local function prototypes, if any.

(7) Local data structures, if"any.

(8) Functions, in alphabetic or depth-first 7 order, except for main(), which is

always the first function.

Each of these is displayed in a distinctive way. For example, the declara-

tion of each function appears inside a banner (see the strext() function in

Section 7.19) that consists of a right-justified comment containing the function

name, followed by a distinctive, eye-catching row of asterisks. The function

scope and return-type declaration appears on the next line, indented to empha-

size the function name and parameters on the next line, flush left. An annotated

description of the function and its return values, followed by a row of hyphens

to enclose the description, end the banner. Parameter declarations appear im-

mediately thereafter, followed by the curly-bracketed function code.

No explicit function return type is specific if the default int applies. Simi-
larly, int formal parameters are not declared.

The function's statements are indented as follows: Each level of statement

logic indentation is one full 8-column tab, and each continued line is indented

under its parent line by 4 spaces (a half tab). Each case of a swizch ()
statement is indented 4 spaces from the switch on a separate line, and each

case clause gets a full tab indentation.

Blank lines separate retara, break, and continue statements from suc-

ceeding lines in functions and loops, except when the next line contains only
a closing curly brace. In this case, the nearly blank line suffices to set off the

early departure from normal processing. Blank lines also separate data struc-

ture declarations from the algorithmic code and appear in other places where

they seem to bring better clarity.

Curly braces are always vertically aligned in function definitions, struct

declarations, and nested control-logic, and usually also in data structure initial-
izations.

All macro definitions have uppercase identifiers.

ZFunctions in the Co_,Joi.n program fileappear in depth-first order.

46 92-12

7.2 Program Preamble and ANSI Header Files

The first block of code in the Corffoin program defines the program VEI_$011, de-

clares the copyright notice string array, and invokes ANSI standard include-files.

The array declaration at this point is not in the normal order of style described

in Section 7.1; placed here, it serves both to display the copyright information

that is required by JPL in its externally released software and provide a banner

for announcing the program, when executed.

#define VERSIO| "(08-&pr-1992)" /* (ConJoin.c)*/

char copyrightnotice[14] [76] =

{ ',sssss_ws_sss,_wssssnW_s_ss_sNsee_#sSnss_w_fos_ssissssstssssnssss,,,

Copyright (C) 1992, California Institute of Technology

111 rights reserved. U. S. Government sponsorship under |ASI

Contract lAS7-918 is acknowledged.

"8

"i $",

"8 8",

,,$ $,,,

"S g",

"$ Robert C. Tausuorths 8",

"_ Jet Propulsion Laboratory S",

"_ 4800 Oak Grove Drive _",

"| Pasadena, CAt 91109-8099 _",

,.# #,,,

};

/*

"SS###|#8#||||###888#####St 8##4tS##|8###SS##88#|###888|||##_##SSS#8##|#||##",
|,,|

ANSI STABD&RD HE£DER FILES ,/

#include <ctype .h>
#include <errno .h>

#include <stdlib.h>

8include <string.h>

8include <stdio .h>

Sinclude <time.h>

Note, in this prototype form, the VEI_I011 is identified by a date, rather than

a release number. This date is automatically supplied by my (customized) text

editor whenever I alter the file. The new date replaces whatever appears within

the first set of parentheses in the file. The second parenthetical element is the

name of the file, manually placed there for my convenience.
The header ctype.h is included because it contains function prototypes

and/or macros for ±sspace() and isprint(), which are accessed by the func-

tions fgel:str() (Section 7.26) and isdigit(), the latter of which is used by
the access() function (Section 7.20).

The string, h header appears because the function prototypes for streat (),

s'crchr(), strc_np(), strcpy(), strlen(), and strstr() are accessed in vari-

ous parts of the program.

The stdio.h header contains function prototypes and definitions of famil-

iar input and output entities, such as fclose(), gel:pos(), fgets(), FILE,

92-12 47

fopen(), fsetpos (), perror (), printf (), and stdert, scattered throughout
the program.

The time. h header provides definitions for the tm structure and time_t data
type, and function prototypes for asctme(), localtime() and time(), all of
which appear in the timesta,,p() function (Section 7.15).

The stddef .h header file is not used, because the only useful element in it

was NULL;however, liIL is used instead (defined in Section 7.3 below).

48 92-12

7.3 Definitions, Defaults, and Macros

7.3.1 Synonyms

Coxt7"oin defines a number of data types, storage classes, constants, and opera-
tors.

typedef int BOOL;

typedef unsigned char CHAR;

typedef uasigaed char * STgIIG;

Idefine GLOBAL extera

8def ine LOCAL n_atlc

IMiefine ill ((void *) O)

#define JUL 0

_efine FALSE 0

Jdefine TRUE 1

#define AiD J_t

_e_i_e IS us

8define |OT !

• iefine HOD

_efine OK l I

I adopted synonyms for the storage type macros extera and static, viz.,

0LOBAL and LOCAL, for some now-forgotten, but probably cosmetic reason, many

years ago. 0LOBAL data and functions are accessible by all program file elements,
while LOCAL entities are accessible only within the environment in which they
are defined.

The null values NIL and NtrL were defined for distinguishability among null-

pointer and null-integer names. IS was defined because I was continually getting

in trouble using = where == should have been (a carryover from programming

in languages with no distinction between assignment and equality operators),

and the other operators followed for similar reasons.

7.3.2 Manifest Constants

The manifest constants in CoxtToin are

$ifndef FILEJANE.NAX

_efine FILEJANE_HIX 50

#endif

_efine MAX_CO_TEXT I0

_iefine KAX_LINE 135

8def ine NAX_Q 100

8clef ine J_qBER.OF.PATHS

• ief ine PAGE_WIDTH 75

FILEJAME_MJtX is normally defined in stdio.h, as required by the ANSI

standard. However, it does not appear there in the Microsoft C 5.1 used to

92-12 49

develop the program, so I have defined it conditionally here. M/Ill_LINE is the

maximum assumed length of a text line in a Co_¢7oin source file. MAI_Q is the
maximum number of lines that may be queued, and thus the maximum negative

offset for lines transcribed by the Y.access directive. The NUMBER_OF_PATHS
is the maximum number of Y.path directives that may appear in a Cot/7oin

program. The PAGE_WIDTH value is used by timest_,,p() in writing the warning

banner on the target file being produced (Section 7.15).

7.3.3 Directives

Since Cov,7oin directives are recognized and passed as comments to the target
processor (_X), it is necessary for CoqToin to recognize the comment syntactic

conventions of the target processor. Cov,foia recognizes directives as specially

formatted strings appearing between open and close markers, whose values are

defined by

_lefine OPEN_COl@lENT "_."

:klefine CLOSE_COM]_NT ""

#.define CO]_E|T_LENGTII I0

These values are among the few in CoD,7oin that are not alterable by run time
directives options. They limit Co_¢7"oinoperations to TEX and its dialects. Other

target processor comment delimiters can be accommodated only by recompila-
tion.

Next are defined the CoqJoin directive signal strings. When these appear,

the actions described in Section 3 take place.

•define ICCESS_SIGNAL OPEN.CO_EgT "access"

8define BREAK_SIG|AL OPEN_CO_E|T "break"

Sdefine COLU_J_SIO|AL OPE|_CO_EFF "colunn"

Sdefine COU|T_SIG|AL OPEN_COHNEJT "count"

_iefine GAKBAGE°SIGNAL OPEN_CO_EJT "garbage"

Sdefine PATH_SIGNAL OPEH_COIO_EJT "path"

_tefine POSTFII.SIGN£L 0PEI_C0_EIT "postfix"

_efine PREFIX.SIG|IL 0PEM_C0_EgT "prefiz"

_lefine RI|GE_SIGMAL OPEN_CO_EBT "ranss"
8define SHO¥_SIGNAL 0PEN.CO_E|T "shoe"

8define SIZE.SIGNAL OPEH_CONqEBT "size"

#define TAB_SIGNAL OPE|_CO_EgT "tabs"

7.3.4 Default Parameters

Certain Cot_7oin parameters can be altered by directives; others may be changed

only by recompilation. Values for most of these are discussed in Section 3.
Defaults are

8define BREAK_DEFAULT " "

• dofine COL_q|_DEFAULT O'

Sdefine COU|T_DEFAULT "#"

5O 92-12

_lefine GARBAGE.DEFAULT '|'

8dofino OLD_TYPE_DEFAULT ".T_X"

• tofino POSTFII_DEFIULT "\\end {verbatim}}"

8define POSTVERBATIM "J \n\n"

#define PREFIX.DEFIULT "{\\footnotesize \\begin{verbatim}"

#define PREVEKBATIH "\\noindent \\verbJ"

8define RA|GE.DEFAULT

#define SHOU.DEFAULT FALSE

#define TAB_DEFLULT 8

#define TGT_TYPE_DEFIULT ".TeI"

PI_EVERBATIll and POSTVEP.BATII! values are not discussed in Section 3, but they

occur in response to the %show directive to provide descriptive markup tag-

ging for displaying commands in the target document. PREVERBATIH contains
\noinden'c to make the directive print at the left margin, and POSTVERBATI}!

contains \nkn to place the ensuing text onto a new line.

Error message strings are defined LOCALly within the error_message () func-

tion (Section 7.10). Access to these is made by indices defined globally:

Ikiefine BG|_NATCH_EKR 0

•define BREAK_ERR 1

#define CMD_LIME_ERR 2

#de_ine END_MATCH_E_R 3
#clef ins IO.SIME_ERR 4

_def ins _ORY_ERR 5

_deflne |O_ACCF_$.E_ 6
.=. ,o,eopv,_
define PAMGE EP_ 8

_de_ine SIZE_ERA 9

See the narrative for the error_,_essage() function, Section 7.10, for a discus-

sion of why this potentially fragile approach to error messages was taken.

7.3.5 Macro Function

The final definition is a macro for reading a message (tasg) from the size-file

stream, removing trailing white space (including newline), and saving it in

taal:l.oc-ated memory.

#define FGETSIZE(s) strdup(strtrim(fgets(s, MII_LIIE, size_street)))

7.4 Function Prototypes for the TOP-C Library

Earlier it was mentioned that several functions from the TOP-C library were

accessed. Co_¢7"oin provides function prototypes for these,

GLOBIL STKIIG

6LOBIL STRIIG

GLOBIL STRIlO

8tratr_-(STRI|G);

strdup(STLIBG);

strfnb(STBI|G);

92-12 51

GLOBIL STKIIIG

GLOBIL STKIBG

GLOBAL STP_IJG

GLOBAL STLTJG

GLOBAL STKIBG

atrinaert(STJtTgG, STKIIJG) ;

atrlvr (STRI|G) ;

atrnao_(STltIlJG, ia_, int);

ntrtcpy(STKIIJG, STILI|G, int) ;

at rtrim(STIkl]JO) ;

Source listings for these functions appear in Section 8.

52 92-12

7.5 Local Data Structures

Despite the "global data considered dangerous" caveat of structured program-

ming purists (which I consider myself to be, at least in spirit [25]), a few
data structures accessible via the overall environment were considered neces-

sary. These appear in a number of functions where accessing them as formal

parameters would be awkward, unsightly, and distracting. The data are

LOCAL long access_lines;
LOCAL CHAR ¢lose[COPME|T.LE|GTH] = CLOSE_COMNEIT;

LOCAL int column l COLUU_DEFAULT;

LOCIL CHIm ConJoin.fils[FI_-msEEE_RlX] = ;

LOCAL long ConJoin_lines ;
LOCAL FILE * CoIIJOinlStria I lIL;

LOCAL STEIIG countsigaal l C0uFr_DEFAULT;

LOCAL B00L credits = TRUE;

LOCAL CHAR g_bage = GARBAGE_DEFAULT;

LOCAL $TRIBG last.acc_lines - IlL;

LOCAL STP.IIG last_CJn_lines = IIL;

LOCAL STRIHG last_ts__lines = |IL;

LOCAL STP_IG last_use_lines = IIL;

LOCAL CHAR mark [10] = BREAK_DEFAULT ;

LOCAL CHAR opsn[COMHEIT_LEBGTH] = OPEI_COMEMT;

LOCAL STKIIG path_list[lUMBER_OF.PATHS] ;

LOCAL Ant path_list.size • O;

LOCAL CHAR postfixEtqAX.LIIE] = POSTFIX_DEFAULT;

LOCAL CHAR postverbat_J8[30] = POSTVERBATIM;

LOCAL CHAR prefiz[MIX_Li|E] • PREFII_DEFAULT;

LOCAL CHAR preverbatin[30] • PREVERBATIN;

LOCAL CHAR range [10] • RJNGE_DEFAULT ;
LOCAL BOOL shoe • SEOW_DEFAULT;

LOCAL CH_ SiZ'__filS [FILEIA____I] ;

LOCAL CHAR spaces [MAX_LIIE] = ;
LOCAL Ant tsbwidth = TIB.DEFAULT;

LOCAL CHAR tgt.file[FILEIAME_RIZ] l ,,,,;

LOCAL long tgt.linel ;

LOCAL FILE * t_t.streal 1 |TT_;

Data items that are not initialized above are set before use in the program.

Many of the variables initialized here are CoqToin directive defaults: ¢o:l.u_,

count_signal, garbage, mark (used instead of break, which is a C reserved

word), postfix, prefix, range, show, and tab_width. Default values were
discussed in Section 7.3. Path specifications, named in path directives, will be

entered into the path_list array, whose size, initially zero, is maintained in

path_1 isC_s ize.

The ConJoin_file string will contain the source file name obtained from

the user-entered command line, and Conjoin_stream will designate the corre-

sponding FILE * stream. The number of lines read from the source is counted
by the variable Conjoin_lines; in the event this file is very large, the type has

been made long.

92-12 53

The target file name is held in the tgt_file string, and tgt_stream is the

corresponding FILE * stream, when opened. The number of lines written into

the target file by Y,access-es is access_lines, and the total number of lines

written to the target file is tgt_lines, both long. All three numbers of lines

are written to the file named by size file; these numbers will be reaxt into

the variables last_CJn_lines, last_acc_lines, and last_tgt_lines when

Co_roin next processes the same source file.

The "announce" option, enabled by an -a entry on the command line, sets

the BOOLvariable credits FALSE, thereby suppressing printout of the program

copyright notice, name, and version number in the am_ouace() function of
Section 7.9.

The two string variables preverbatim and postverbatim are unchanged

once initialized in the program, so macro constants could replace them in the

code (see Conjoin_files() in Section 7.17). Since these are references to

ISTEX-dependent strings, they are candidates for initialization()-alteration
in future versions, should that appear beneficial. If this need ever arises, it is

an easy matter to replace the variables with macros.

The same is true of the variables open and close, which contain strings that

open and close comments in the target-processor language.

The variable spaces is a string used by Conjoin_files(), putline(), and

timestamp() functions for spacing lines of output to the target file.

54 92-12

7.6 The main() Program

The main() function of the Co_7oin program is fairly short,

**

main(trgc, argv) /* Process a Conjoin file to create • target file.

htuz_ • FALSE value if no failure occurs, or
TRUE or other nonzero value Lf • failure eU -

encom_tered,

/. .. */
$T_IG ugv[];

(
BOOL _ailure;

FIlE *size_stream;

int i;

initi=lization(_gc, argv); /* tezlinates _ no source _ile nmaed */

open.io__iles(); /* te_i_ates on failure in openi_ g files */

access_ltJ_es : Conjoin_lines = tgt.lines = O;

t_stamp() ;

failure • ConJoin_files();

failu:e l = fclose(ConJoin.etreaa) I fclose(t_.stream);

for (i = O; i < path.list_size; i+_)

free(path.list [i]) ;

free (last_acc_lines) ;

free (last_CJu.liaes) ;

free (last_t__lines) ;

free (last .use.lines) ;

pri_tf(,'Processed:\n_lOld _s source lines\n[lOld accessed lines\a °'

"_lOld 7,s total lines uritten\n", ConJoin_lines, ConJoin_file,

access_lines, tK__liaes, t__file) ;

i_ (size.stream - fopen(zi.ze_file, "e"))

{ fprint_(size_stream, '°_Id\n_id\n_id\n_.3f\n". Conjoin_lines,

access_lines, tgt_lines,

(double) access.lines / (double) t_.li_es);

failure l= fclose(size_strean) ;

}
return failure ;

The usual main() command-line arguments azg¢ and axgv are passed di-
rectly to initialization(), from which a mandatory Con3oin_file name, an

optional target name, and an optional switch to disable the credits announce-

ment are extracted. If a target is not named on the command line, a default
name is made from the Conjoin_file by replacing the source file type with a

default type (currently, .TeX). If no source file is named, or if the source and
target files are the same, initialization() prints a usage message_ then ter-

minates the program with an exit value of TRUE. All error terminations return
a nonzero value to the operating system in case Co,roAn has been invoked from

a script (or batch) file whose further processing may be affected.
Both source and target files are opened; if this is not possible, the cause of

the failure and the usage message appear, then CmtToin terminates as above. If a

92-12 55

target file of that name already exists, it is renamed using an 0LD_TYPE_DF.F,tULT

(see default values in Section 7.3, above).
A header is written by the timestamp() function to the target file before

any processing takes place. This banner stamps the file with the time and date
it was created, and also records the target file name. The name of the source

file is also written, along with an instruction not to edit the target file, but to

make changes in the Coxl_ro£n source instead. (The reason for this is that editing

the target file will not survive the next Coxt_'oin-ing of the same source file.)
The main work of the program occurs in Con3o£n_files(). This function

reads lines from the source file and examines whether a Co_?'oin directive ap-

pears. If so, the action described in Section 3 occurs; if not, the line is copied

to the target file intact.
If an error occurs, either in Coxl_roin-ing or closing files, the nonzero error

value is set for termination, malloc-ated strings from the Y.path directive and

elsewhere are freed (this may be clone automatically by the operating system

upon program termination, and could be redundant). This is followed by a

terminating summary message and by saving the numbers of source, access,

and target lines.

56 92-12

7.7 The ini%ialization() Function

**

yo id

init iLTization(arg¢, 8rgv)

/e Process co_ line file nmses and options, amd retrieve

size_file statistics.

I* .. 01
STKXIG azgv[];

{
CHAR meg [MAX.LI|E] ;

STRI|G •;

FILE .eize_strean;

connand.line(arKc , azgv, u.g);

annou.uce 0 ;

i_ (*--g)

{ "'ag.O i
error_nessage(CXD.LlJE_EER, sag, FALSE) ;

exit (T_J£) ;

} ::

file.def ault • () ;

ff (lOT strcmp(ConJot:.file, tgt_file))

{ strcpy(..tg, Conjoin_file) ;

eConJofn_fiie = I_IK.;

usage() ;

error_message(TO_SAIE._Ut, ,,ag, FALSE) ;

exi_ (TI_'E);

strcpy(strchx(s = strcpy(size.file, tgt_file), '. '), ".siz") ;

i_ (size.stream • _opsn(aize.file0 "r"))

{ last_CJn.lines = FGETSZZE(NSg);

last_acc.lines • FGETSIZE(msg);

last_tg__linee = FGETSIZE(a#g);

last.use_lines • I_ETSIZE(_mg) ;

fclose (size_stream) ;

}
}

The initialization() function startsby passing the axgc and azgv pro-

gram inputs to the command_line() processor,which proceeds through the

argv stringslooking for options and filenames. Each unrecognized option is

concatenated with any others and recorded in the msg string.(Cautloni too

many or long anomalous inputs may cause msg to exceed itsallottedwidth,

and may bomb the program in some implementations. Ifthisappears to be a

problem, futurereleasesmay adopt more robust handling of such conditions.)

The firstnon-option stringisassumed to be the Conjoin_file, the second,the

tgtJile, and any othersare errors,appended to the msg string.

Next, the program announce()-ment is made. If credits has been set

FALSE, the copyright,program, and versionprintoutare inhibited.

Ifa msg has been returned from initialization,a command-line error has

occurred, usage() printsa shortset of operationalinstructions,and the error

92-12 57

message follows.The function returnsa TRUE value to the operating system.

The file_defaults() functionsuppliesa targetfilename and defaultfile

types ifthese were unspecifiedon the command line.Ifno tgt file has been

named, the ConJoin_file name isused,with the filetype changed to the target

type default.Ifa tgt file isnamed, but no "." appears in the filename, the

defaulttype isagain appended.

Ifthe names ofthe Conjoin_file and the tgt_file are the same, the usage

message and errorare printedand the program again terminateswith a returned

valueofTRUE. The Con Join file stringisnulledso that no filelineand column

number appear in the errormessage.

Finally,the functionends by constructingthe name of the size file, and

then retrievingthe last-timevaluesofsource,accessed,and targetlinesfrom it

for use by the Zsizs directive.

58 92-12

7.8 The command_line() Function

********************** ************************************ e***************

void

comaand_li_e(argc, argv, Bg)

]* Process in_omtlo ! on the command line: extract ConJolnJLZe

ud tiff_file names, and option -a, ehen present, leturn gith

meg sot to error conditloms.

1.___. .. .1

STRZIQ orgy[], meg;

{
int i;

gTRIIG s;

for (i = 1; i < szgc; i+*)

{ e = strlwr(aru[i]) ;
i_ (*s IS '-' OR *s IS '/')

{ switch (.4-_s)

{ CaSe _&J :

credits • FALSE;

break;
default :

sprintf(msg + etrlon(msg), "Unknown option: "

"_s.\n", _[i]) ;
)
*orgy[i] = FJL;

}

else if (NOT ,Conjoin_file)

8tzcpy(ConJoin.filo, s) ;

else if (lOT *tgt.file)

strcpy(t_.filo, s) ;
else

sprintf(msg + strlen(msg), "Unknown c_wmd: _s.kn", 8);
)
if (|OT ,ConJoin_file)

strcat(_g, "|o souxce file named.kn");

This function first NZLs the names of source and target files and the return

message, and then sequences through the command line arguments (excluding

the 0Oh, which is the program path), one by one. Any argument beginning with
- or / is deemed an option, and only -a is presently acce_ptdble; its appearance
turns off the program, copyright notice, author, and version credits. Any other

attempted option input concatenates an Unknolrn op'_ion: string onto msg.
The first command line argument not deemed an option is taken to be the

Con:loin_file name, and the second, that of the tgt_file. Any others append

Unknown command: strfngto msg.

The useof sprintf () toconcatenateerrorstringsisa simpleway toproduce

the formatted msg involvingthe offense,the offendingelement, and a newline.

Ifno source fileappears on the command line,thisfactisappended to the

errormsg.

92-12
59

7.9 The announce() Function

Ifthe credits switchisstillintact(i.e.,TRUE), then the copyrightnotice,author,

program name, and versionare printed;ifnot,these items are omitted.

**

void

annou_ceO 1. lnnounce prol_ram, copyright, and author.

{
int i;

i_ (credits)

{ for (i = O; *copyrightnoticI[i]; i++)

printf("_s\n", copyrightnotice[i]);

print_("\n\t\t\t ConJoin Program"

"\n\t\t\t _s\n\n", VEP_IOI);

}

60 92-12

7.10 The error_mess_e() Function

_,,ooeee_e_ee,&ib,eee,eejleeeeso&,o&&_eellss&e*ee_e*seeele*eeeeeeeeeeeeeee_

void

error.message(n, a, f) /* Write error ttessage n augmented eith string s

to stdout, indicating the cub--rent].ine in the

source :_ile, Repeat the message on the taxget

ile i f is TRUE.

I, .. 01
STILIIG s ;

{
LOCAL STKIIG errasg[] =

{ "Beginning retch str_ not :round: ",
"Break atrin_ is 4-valid: ",
"Comund l_e error: ",

"End-match string not fo_d: ",

"Input _ output files may not be the same: ",

"Memory insufficient for queue. ",

"So access _ile found: ",

"|o lines copied fron accessed file.",

"Range separator nlssin K.",

"Size command case invalid: "

};

if (*ConJoin_fLle)

printf("\a_s, _d 1- _aY.s_",
Conjoin_file, Conjoin.lines, errmsg[n], s);

else

printf("_s%s\n", errnsg[n], s);
(_)

fprlntf(tgt.stream, "***ERROR*ee _s_s\n", erntsg[n], s);
}

The LOCALized declaration of error messages accessed via globally defined

macro indexes is admittedly fragile and prone to unreliability when later changes

are made in the program's error handling. It would have been more reliable to

pass the error message directly, as a string argument, rather than as a numeric

index. Each error message, in either case, appears only once in the program,

so there is no storage advantage whether localized or dispersed. I tried it both

ways. I think that the program is more readable with all the messages in one

place. If, in future maintenance, this decision proves faulty, redistribution of

error messages will be considered.
The error_message() function merely prints the selected error message to

sl;dout, and, if f has been set TRUE, also to the tgt_strea= in slightly altered
form.

92-12 61

7.11 The usage() Function

void
usage() /e Priu_ a ness_o on usage syntax o_ Co_oLu.

1, .. ,/
,[

printf("Ussge: ConJoin <Conjoin source> <target file> "

"[(options>] \n\n"

"\tSouzce file type default is .CJn\n"

"\tTaurget file type default is _s\n\n"

"Opt ions: \n"

"\t-a Do not aanoumce the pro&,rma.\n", TQT.TYPE_DEFAULT);

This function is invoked whenever an abortive usage error has occurred. The

message reminds the user of the syntax that is required, the defaults that apply

to that syntax, and the processing options that are available. It terminates with

a TRUE value returned to the operating system.

62 92-12

7.12 The file_defaults() Function

**

vo id

file.defaultsO /* Supply Conjoin file type .CJn if mSssing, and

supply missing parts of tEt_fils0 if any.

I* .. *I
{

STPJIG 8 ;

iT (IOT (s = strchrCConjoin.fils, '. ')))

8trcat (ConJoin.file, ".CJn") ;

ClOT*tgt.fLls)
{ strtcpy(tgt_fils, Con3oin.fJ.le, . :

strchrCConJoin.fils, '. ') - ConJoin_file) ;

}
if (BOT (8 = strchr(tgl;_fils, '.')))

..... atrcat(tgt_filfl, TGT.T_PE_DEFAtrLT) ;

Note that the Con3oin file will always have a file type; if one is not pro-

vided by user input, it is supplied in the first if clause. If no tgtJile has been

named, the Conjoin_file name is used, up to the "." (a "." is guaranteed to

appear by the first step above). The length of text copied excludes copying of
the dot.

If the tgt_file bears no ".", the TGT_TYPE_DEFAULT is applied. Thus, the

target file also always has an explicit file type.

92-12 63

7.13 The open io f±les() Function

**

void

open_to.filesO /* Open ConJoin_file and tgt_ffle into ConJoin_stresa

and t_t_strsm=. Eenaue old tKt_file, if LuI,

ui_h OLD.TYPE_DEFIIILT. Ternina:e gith an error

message via file.openO if files cannot be opened.

I, .. *I
{

C_IR tgt .bak[FILEIiKE._I] ;

FILE * f ;

STltlIG • ;

Conjoin_stream ffi file.open(Conjoin.file, "r °') ;

if (f = fopen(tgt_file, "r"))

{ f¢lose (f) ;

• = •trchr(strcpy(tgt.bak, tgt_file), _ . _) ;

strcpy(s, OLD_TYPE_DEFAULT) ;

remove (tgt_bak) ;

renane(t_.fJle, tgt_bak) ;

}
tKt_stream = f/le_open(t__filo, "e") ;

The first fopen() finds the Cozffo£u source file for reading. If the file cannot
be found, or otherwise cannot be opened, the program terminates at this point

with an error message and a TRUE value returned to the operating system.

The _.f clause checks to see whether the file named by tgt file currently

exists by opening the file for reading. If it does, a backup file name is created

using the name up to the "3 followed by the 0LD_FILE_TYPE. Then the current

file is renamed to this tgt_bak.
The final fopen() opens the target file for writing, with the same termination

consequences as above if the target cannot be opened.

64 92-12

7.14 The file_open() Function

This function is equivaIent to fopen(), except that if the file cannot be opened,

an error message is printed with the reason followed by program termination.
The function is only invoked where abortive action is desired in response to an

error. The name is nulled prior to calling error_message to suppress the file

name and location portions of the printout.

FILE *

file_open(name, use)

/* Open the name f_le for given use, and return res_Lltin g stream.

If file cannot be opened, print reason, and abort pzo¢ossiug,

/. .. ,/
STRIBG name, use;

{
CHAR s [NAI_LIBE] ;

FILE * stream;

if (IIOT (stream = fopen(nams, use)))

{ strcpy(e, name) ;

Shame = BUL;

strncst(strcat(s, ": "), etzerror(errao), _I_LIK- I);

error_msesage(C_D.LIl__EILR, e, FALSE) ;

exit (TRUE) ;

}
retnrn Stream;

)

92-12 65

7.15 The timestamp() Function

The purpose of the timestnp() function is to annotate the target file being

written with informative and warning commentary. The information consists of

the target file name (tgt_file), the current time (accessed via ANSI standard

functions time() and localtime()), and the name of the Conjoin_file that

created it. The warning is simply an exhortation not to revise the file. Nothing

dire happens if this file is altered, but the user probably meant for the changes

to have been made in the original source file. When Con,7oin-ed again, changes

in the target file will be lost.

**

void

timeetanp() /* Write the tgt_file, name and a tJJse-stauped header gith

a revision earning onto the tgt_stream.
I, .. ,I
{

time_t

CHAR

STRDIG

struct tm•

i.at

clock;

atile [26],

bar [KAX_LIHE],

blanks [I_X_LIHE] ;

sp, text;

t;

n;

n = strlen(open) + strlen(close);

otrnset(bar, '=', PAGE_VIDTH - n) ;

otrnset(blanks, p 3 P/GE_¥1DTH - n - 2);

t ime (&clock) ;

t = localt_e(&clock) ;

strat rim(strcpy(atime, aactixm (t))) ;

sp = right_fill(atime, strlen(tgt_file) + n + 5);

fprintf(tEt.streaa, "_s (_s)_s(_s)_\n", open, atiae, sp,

tgt_f_le, close) ;

fprintf(tEt.stream, "_s_s_s\n", open, bar, close) ;

text ffi "_si This file ,as ConJoin-ed from input file %s._sJ%e\n";

sp = right.fill(text, strlen(ConJoin.file) - n - 7);

fprintf(tEt.stream, text, open, Con3oin.file, ep, close);

fprintf(tgt_stream, "_sl%sl_s\n", open, blanks, close);

text = "ZsI DO |OT REVISE THIS FILE._sI_s\n";

fprintf(tEt_stream , text, open, right_fill(text, n - 7), close) ;

fprintf(tEt_stream , "_sl_sl_s\n", open, blanks, close);

text ffi "%s J To make revisions, modify the original file.%sl_s\n";

fprintf(tEt_stream, text, open, right_fill(text, n - 7), close) ;

fprintf(tEt.stream, "_s_s_s\n", open, bar, close);

tgt_lines +ffi H;

The only tricky part of this function is in correctly creating the flush-right

time-stamp box. The function strnset() from TOP-C creates bars for the

top and bottom of the box, while right_fill() provides the correct number of

blanks for formatting. Even though the global variable spaces is not referenced

66 92-12

within timestamp(), it is changed as a side-effect of riEht_lill() (see the

discussion in Section 7.16, below).

The reason for using stratrin() before copying asctine() to atime is that

the string returned by asctime() is terminated in a newline character, and it

is necessary to remove the trailing white space for proper formatting.

The tgt_lines variable is finally augmented by the number of lines written

onto the target file by this function.

As an example, the header written by ttnestanp() on the target file com-

prising the body of this report is

(Fri Ju.l 31 11:20:39 1992) (¢J body.Tel)

_w.ull_emllla¢l_w _s_mn m sl_l_m_eumsw_ln _w_ummll_s_n n_s_w

_l This fL_o was ConJoLn-ed from input file ¢j.bodT.CJn. I

_1 I
_J DO HOT KEVISE THIS FILE. I

_1 J
_l To hake revisions, modify the orig4nal file. I

_mm_s_sunm_u_wnnnnunnlrBwnsnBnnnusnnu_mmsnt_w_wum

92-12 67

7.16 The right_fill() Function

STKTIG

ri_t._i11(s, n) /* Generate spaces as a blank string o5 lehigh

PAGE_WIDTH - n. Itet_rn spaces.

I* .. "I
STRZIG s;

{
return s_rnset(spaces, _ ', PAGE.gXDTK - strlen(s) - n);

}

This simple function perhaps exemplifies the practice of undue parsimony in

programming: the use of an existing, idle global data structure by a function it

was not initially intended to serve. Throughout the remainder of the program,

spaces carries the indentation prefix for lines copied from accessed files. But

here, before the scanning of the source even begins, it is free for other duty.

Luckily, its name fits both usages. This general practice can lead to very fragile

and hard-to-read code if overdone. Even though this module is only invoked

from a single function of the program, and even though it is very tiny, the

program modularity is less than optimum.

This function should be noted as a possible target for later perfective main-
tenance.

68 92-12

7.17 The ConJoin_files() Function

This function processes the Coq.7oin source file to produce the target file via the

directives described earlier, in Section 3. The algorithm is straightforward:

**

Conjoin_files() /* Process the ColL]Oin SO_LTCe file a_d create the

e_a_ded target fi_e. ht_-n a Io_ero vales

if an error occurs, OF a 0 value iS nons_ Count

ConJoin_lines, access_lines, a_d t_t.lJa_es.

/e ,, .. ,/
{

BOOL error ;

CULR hold[_AI_LI|E],

line [I_II.LI|E] ;

STRIIG extract ;

error z FALSE;

*spaces = IUL;

for (ConJoin_li_es = O; fgets(line, _I.LI|E, ConJoLn.strsu);)

{ ConJoin_lines++;

tgt.lines++ ;

if (IOT *strfnbCline))

{ i'priatf(tgt_stream, "Zs", line);

coat inns ;

)
if (strstrCline, open))

{ i_ (extract = strstrCline, /C_ESS.SIGIAL))

etrcpy(hold, line) ;

error [= directive(extract, line) ;

}
else

extract • |IL;

fprintfCtgt.streal, "%s", line) ;

if Cextract)

error [= access(hold + (extract - line) +

st rlen(iCCESS_SIGIAL)) ;

}
retuX_l error;

The error switch is set FALSE and spaces is NUL-led in preparation for

processing. The loop iteratively reads in a string line until an end-of-file or

reading error occurs. Each line read in augments the number of ConJoin_lines

and tgt_lines. All source lines copy into the target file in one form or another.

If a line is blank, it is immediately written to the target file, and processing
continues.

Each line is prescanned to see if it contains a Co_oin directive, as indicated
by the appearance of a comment opener. If one exists, then the line is checked

for the appearance of an ACCES$_$IGllAL, whose location is saved in the variable

extract. If line is recognized as an 7.access it is saved in the hold buffer.

92-12 69

Thereafter, the line is processed as a possible directive. A non-iIL extract

value sent to directive() is a signal that the directive is an %access and is

only to be prepared for showing, if the show mode is in effect. The remainder

of the processing of an %access directive takes place after the line has been

written on the target.

If no comment opener was detected, extract is set to iIL so no access()

action takes place later.

The line either prints as it was when read in, or as altered by directive().

Only %size and %show directives cause alterations to the line; %size inserts a

numeric value into the line, and %show surrounds the line with preverbatin

and postverbatim target processor commands when turned on.
If extract is non-NIL, the hold line is processed as an %access directive

(the line will have been corrupted in the show mode). The position after

the _,access signal in hold is computed from its location in the line prior to

directive () processing.
Processing _,access directives is delayed with respect to processing of other

directives so that transcribing the extracted text can follow the copying of the

directive itself onto the target file.

On completion of scanning the source file, the function returns the compound
results of error detection.

70 92-12

7.18 The directive() Function

Because or" its length, this function will be described in increments. Overall, the

structure is comprised of three communicating parts:

• declaration and initialization

• directive action

• preparationfor showing

The firstactionisto preserve the incoming text by copying itinto the line

string,which isprocessed instead. However, text willalso be processed ifit

contains a Zsize directiveor ifthe show condition isTRUE. The text stringis

laterwrittenonto the targetfileby the invoking function.

_OL

directive(extract, text)

/* Process Conjoin directives that may appear in the text string.

If extract is non-JIL, the text contains an access directive

that may only need to be prepared for ehog-ing. In case of

Zeizs, vrite the appropriate values into text. Insert

preverbati m and postverbat im into text if shoe is, or has just

turned, TRUE. Return TRUE if a bed _ize case appears; FALSE

othereiee.

/* .. */
STLY|G extract p text ;

{
STR,IIO s,

t;

CHAR g,

line [In_LZSE] ;
BOOL chanse_shoe ;

etrcpy(line, text) ;

The next, and largest,segment of the function isa 12-way if...else if

...else if ...directive-selectionstructure.Ifextract isnon-IIL, a delayed

7,access directiveisineffect,sono actiontakesplaceinthisstep.The t pointer

issetto the locationofthe beginning ofthe directivein the l£ne.

if (extract)

t • line + (extract - text);

Many of the other directive actions simply record parameter values:

else if (t = strstr(line, BRF_I_SIGILL))

strext(m, rk, t + Itrlen(BREJK_SIG|AL)),

else if (t = etrstr(line, COUIT_SIG|AL))

strext (countsignal, t + etrlenCC_L_rr_SIGIJL)) ;

92-12 71

else if (t • strstr(lins, POSTFII_SIG|AL))

strext (postfix, t + strlen(POSTFIX_SIGgAL)) ;

else if (t = strstr(line, PKEFIX_SIGBLL))

strext(prefix, t + strlen(PREFIX_SIG|AL)) ;

else if (t = strstr(line, P_EGE_SIGBAL))

strsxt (range, t + strlen(RAJGE_SIGIAE)) ;

else if (t = strstr(line, GARBIGE.SIGJAL))

{ if (g = *strfnb(t + strlen(GiRBAGEoSIG|AL)))

garbage = g;

}

else if (t = strstr(line, TIE.SIGMAL))
tabeidth = atoi(t + strlen(TIB_SIGJAL));

In each of these, the remainder of the directive after the detected SIGNAL de-

termines the new value of the parameter (white space suppressed). The param-

eters affectedare mark, countsignal, garbage, prefix, postfix, range, and

tabwidth.

A similar action takes place with path_list items, except each path ex-

tracted from the directive is saved in malloc-ated memory by strdup() of

Section 8.2.

else if (t = strstr(line, PITH.SIGIAL))

{ path.list[path_list_size++] =

strdup(strext(t, t + strlen(PATH_SIG|AL)));

}

If a %column directive appears with a positive value, the spaces string is

filled with an equal number of blank characters; otherwise spaces is nulled.

else if (t = strstr(line, COLUME.SIG|AL))

{ column = atoi(t + strien(COLUKI_SYG|IL));

if (columa > O)

{ strnset(speces, ' ', colm);

colunm = O;

)
else

espaces = |liE;

A %show directive line is examined for on or off alternatives.

else if (t • strstr(line, SHOM_SIGRiL))

{ s = strler(stratrim(t + strlen(SHOM.SIGlAL)));

if (MOT strcmp(s, "on"))

change_show = TRUE + TRUE;"

else if (lOT strcxp(s, "off"))

change_shoe = TRUE + FALSE;

if (change_show lED I0T shoe)

shoe = change_show - TRUE;

72 92-12

Either on or off causes change_show to switch from 0 (FALSE) to 1 (TRUE +

FALSE) ifshow goes off, or to 2 (TRUE + TRUE) ifshow goes on. Unrecognized

show alternativesare ignored.IfZshow has calledforaction (change_show has

been set to a nonzero value),and ifshow iscurrentlyoff, then whatever action

was calledfor takesplace immediately,in case the directivewas to go on.

The remaining directive,Zsize, causesthe action

else if (t = etretr(line, SZZE.SIG|AL))

{ do

{ et = EIrL;

esitch (e(t = strfnb(¢ + etrlen(STZE_SIG|LL))))

{ eels J¢ _ :

case)C 3 :

s = last.CJn_lines;

break;

CISe 'e "_:

cs.le IA_ :

• " laet_acc_Zines;

break;

CaSe J_ ,

case)R 3 :

s :' last_use_lines;

break;

CaSe Pt J :

case IT3 :

S • last_tgt_lines;

break;

defeult :

s • "0";

ezTor_messa/;e(SIZE_EU, text, FALSE) ;

return TRUE ;

}
spri_tf(text, "_S_S_S", line, s, ++t) ;

} ghile (t = stretr(strcpy(lt_e, text), $IZE_SZG|JL)) ;

Nulling the characterwhere the SIZE_SIGNAL was found truncatesthe line at

that point,removing the Zsize di.rective.The characterafterthe SIZE_SIGNAL

causes the corresponding number of linessaved inthe sizehistoryfiletoreplace

the Zsize directivein the reconstructed text by spx'intf(). The do loop

iteratesuntilno furtherZsize directiveisdetectedon the line.

The finalsegment ofthe directive() functionprepares the lineforpossible

explicitdisplayinthe targetdocument. Itdoes th!sby insertingpre- and post-

verbatim environment commands around the directive.Stringt willbe noniIIL
ifa directivewas detectedl

if (t lID sho_),

{ strittsert(text + (t - line), preverbatim);

if (sclose AID (t " stretr(text, close)))

strinsert(tex_, postverbatim);

else
z

E

|

92-12
73

strcat(stratrJ_a(text), postverbatia) ;

i_ (change_shou)

shou = chLuge.shov - TRUE;

}
return FALSE;

}

If no directive was found in text, the function terminates with no action

taken.

74 92-12

7.19 The strext() Function

The purpose of this function is to extract the substring up to the closing com-

ment mark (if any) and copy it into another, trimmed of leading and trailing

white space.

**
STklllG

strext(s, t) /* Extract striatg t up to the closo-commnt str:Ln_, if cloeo

is not nli1_1, or to the e_d o:_ t _-_ nll_L1, into s. ReRove

loading and trailin 8 blanks from s and return s.

/, .. */
STRING e, t;

{
STRIIG p ;

if (*close HD (p = strstr(t, close)))

strtcpy(s, t, p - t);

else

etrcpy(s, t);

return etratrlm(e) ;

Z

92-12
75

7.20 The access() Function

B00L

access(bu_for) /* Process the text ertractlon operation speclfied

in the line buffer to the tgt.stres_. Return

FALSE if no error, TRUE if an error occurred.

I, .. *I
STKIBG buffer;

{
STRIBG

CHIR

BOOL

FILE *

int

b__match[Mll.COBTElT + 1],
end.Jsatch[_Ltl.COJTElT ÷ 1];

nodule [FILEJIME_MLI] ;

error;

modulest ream;

bgncount,

bgnoffsot,

endco_ut,

endoffset,

i;

strext(bu_fer, buffer);

i_ (match.parameters(buffer, nodule, bgn_match, end_match, &bgncount,

&bgnoi_feet, aendcount, kendoffset))

return TRUE;

if (lOT (modulestresl = open_access(nodule)))

{ errorJmssage(|O_ACCESS_E_t, module, FALSE);

regurn TRUE;

}
printf("Zsaccess _s_s\n", open, buffer, close);

if (eprefix)

fprintf(tgt.streal, "_s_n", prefix);

error = scan_to_bgn.jaatch(aodulestrea-, bgn.latch, b_ncount,

bgnoffset);

error] = copy_to.end_aatch(nodules_reaa, end_hatch, endcount,

endoffset);

for (i = O; bgn_aatch[i]; i++)

free(bgn_Ratch[i]);

for (i = O; end_aatch[i]; i++)

free(end_match[i]);

error [= fclose(modulestreaa);

if (*postfix)

fprintf(tgtstream, "_s\n '°, postfix);

return error;

}

The first step of the algorithm removes the trailing comment signal and

leading and trailing white space from buffer. The second step extracts the
name of the file to access and the search parameters; if no error is encountered,

the algorithm proceeds.
The third step opens the module stream; if the extracted file name is not

found in the current directory, each of the directories named in %path directives

is searched. If the file is found and opened successfully, the next step lists

76 92-12

the name and extracted parameters by using current settings of the 7.access

separator strings.
Next begins the actual access: If there is a prefix, it is written into the tar-

get file. The access file is searched for the beginning match conditions described

in Section 3.2, and thence copies until the ending match conditions have been

met. Finally, the access file is closed, the postfix is written to the target file,

and the function terminates, returning the indicator of any error condition that

may have occurred.

Note: the error expression contained in the three statements near the end of

the function should not be combined into a single statement because the order

of evaluation of functions is unspecified in the ANSI standard.

92-12 77

7.21 The match_parameters() Function

/@e$$eeeeeee$eees.$eeeeee$$_$eeeeeeeeeee&$_eeeeeeeeeseeeoo$eeeesseeeeseee/

BOOL

-etch_parameters (buffer, module, b_n.match, end_latch, b_count, b_offset,

endcount, endoffset)

/e Extr•ct •ccns nodule name, and beginnlng and end_ •ccees

conditions. Return TRUE ff an error is encountered, FALSE

otherwise.

/. .. ./
STRZ|G buffer, bgn.match[], end_match[], nodule;

int ebgncount, *bgnoffset, eendcount, sendoffset ;

(
CHAR line [MAI_LIIE] ;

STRI|O s,

t;

(10T (s = strstr(strcpy(llne, buffer), mark)))

{ exTor_mess•ge(BREAl.ERR, buffer, F_LSE) ;

return TRUE;

}
-tr•tr/mCstrtcpyCaodule, line, • - line)) ;

if (MOT (e(t = str_nb(s + strlenCa_rk)))

lID (s = strstr(g, rage))))

{ error_message(lL/IGE_El_, buffer, FALSE) ;

return TRUE;

)
es = rOL;

• += strlen(range);

if (access_condition(t, bgn_match, b_count, bgnoffsst, 1))

return TRUE ;

if (access_condition(s, end_match, endcount, andoffse$, -I))

return TRUE;

return FLLSE;

)

The first steps above extract the name of the file to access into ,.odule by

locating the 7.break .,ark (signaling error if none is found) and copying that

portion of the input buffer.

The next segment sets t to the starting-match condition, beginning just

past the .,ark location and extending up to the range marker. (If no marker is

present, the function terminates returning an error indication.) Putting _'L in

place of the marker isolates the starting match specification string.

Note that string s has been positioned just past the range marker, and
therefore points to the end-condition string. The access_condition() function

invocations extract the context strings, context count, and offset values for the
matches to be made in scanning for the beginning match and copying to the

ending match.

78 92-12

7.22 The access_condition() Function

Access match conditionsare extractedfrom the stringbuffer parameter. The

contextstringsare copied intothe match dynamic stringarray,but count and

offset values are firstset by locatingthese terms and removing them from

the buffer. Removal merely requiresseeking forcounts£gnal, +,and -, then

convertingsubstringsto integervalues,and finallyinsertingNULs to isolatethe

match-stringportion ofthe condition.

/e***** _ ********i*e*qt* ee***_t e _i* e***eele eees***_@eeee*ee*eee*ee e*e@*e***/

_0L

access_condition(buffer, match, count, offset, i.ult)

/* Eztract access condition fr0a buffer. Set offsot to Init if

no offset is parsed in the buffer. Return TRUE if an error

is encountered, FALSE otherulse.

/,...I
STRIIG buffer, match[] ;

int *co_mt, *offset ;

{
int n;

STRIIG s, t;

*offset m init;

*COlmt = 1;

S = stratrim(b_fer);

i:r (t = strstr(s, Countsi_n_l))

{ *¢o_t = atoi(s = t ÷ ltrlon(Conntsi_al));

et = |UL;

}
i.f ((t = strchrCs, '+')) OR (t - strchl'(s, '-')))

{ eoffset • atoi(t);

*t =BUL;

}
else if (isdigit(*buffer))

{ *offset " atoi(bu_er);

*buffer - JUL;

}
s = b_ffer;

for (n = O; *s liD n < MIX_CO|TEXT; n++)

{ _ (t = strstr(s, mark))

{ *t " MOL;

t +t strlon(mark);

}
march[hi = strdup(strtr/J(s));

s = strfnb(t ABI) st ? t : 8 + strl_(s));

}
if (n > 0 &ID match[n - 1] IS IlL)

return TRUE ;

march[hi = |IL;

return FALSE;

92-12 79

7.23 The open_access() Function

The open_access() function attempts to open the file named as the param-

eter. Failing this, it attempts opening this file in each of the directories previ-

ously named in %path directives, until successful. Then, the open file stream
is returned. If unsuccessful, a NIL value is returned to the calling procedure,

access(), of Section 7.20.

**

FILE •

open_access(file) /* Open the specified file for readin K.

/. .. ./
ST]tIBG file;

{
int i;

CRIIt path [FILEJAHE_HAX] ;

FILE • stream;

8trcpy(path, file) ;

for (i " O; IOT (stream • lopes(path, "r")) AID i < path_list_size; i++)

strcat (strcpy(path, path.list [i]), file) ;

return stream;

8O 92-12

7.24 The scan_to__bgn_match() Function

/e eeeeeee* e_ 4,_eee4 ee_.'.oeeeQ el o oeee,l, e _ee, eeeo eee e o_ee_ee e_4,k ee 4,eeeeeeeeeeee/

BOOL

scan.to_bgn_aatch(modulestroaa, bsn_aatch, bgncouut, bgnoffset)

/* Scan the nodulost:resm for the bogizmi_g match condition and

return positioned to access the first line to be copied.

I. .. .I
FILE * aodnlostream;

$T_|G bKn_match[] ;

int bgncount, bgno_set ;

{
_jpoe .t _ •

t_qne_e [H£X_Q] ;

int n,

offset,

qex ;

BOOL error ;

long qe;

t_'_ta text [MAX.LIllE] ;

n = error = offset = O;

qe • -1;

shile (lOT fgetpos(aodulestroaa• kfp) AID

fgets(teXt, I(iI.LI_IE, mod_L_estro ms))

{ qex = (int)C++qo NOD RtX_Q);

fpqueue[qex] = fp;

if (bgn_mat ch In])

{ ff (leT strait(text, bgn_match[n]))

Cont inuo;

i_ (bgn_match[++n])

c ont inue ;

if (--b_ncount <= O)

{ if (bgnoffset <- O)

{ qox = (int)((qo + bgnoffset) NOD NIX_q);

fsetpos(modulestreaa, &fpqueue[qex]) ;

break;

}
else if (bgnoffset-- IS 1)

break;

}
else

n • O;

}
else if (JOT bg_o_set)

{ fsetpos (modulestrema, kfpqueue [qex]) ;

break;

}
else if (++offset >= bgnol_set)

break;

}
_f (bgn_match[O] AID bgn_match[n])

{ error.message(BGl._TCH.ERR, bgn_match[n], TRUE) ;

92-12 81

error s TitUE;

return error;

In this algorithm, qb and qe are the queue-beginning and queue-ending in-

dices of lines read from the access file. If the beginning offset is negative, then

when the beginning match and count conditions are reached, the beginning line
is located from the queue. The lines themselves are not queued, but rather their

positions in the file are stored in a file-position-queue, Ipqueue []. Since the

queue length is limited to MAX_Q elements, it is necessary to treat the queue

circularly, indexed by integers qbx and qex.

Until the beginning access condition is met, the file positions and text lines
are read into fp and text, respectively. The position is saved in fpqueue [qex],

while text is examined for beginning match conditions.

One will note that the copy_to_end_match() function (Section 7.25) main-
tains a text queue, rather than a file position queue. That alternative was also

considered here to make the two functions more similar. The speed trade-off

between the two alternatives--i.e., constantly allocating, copying, and freeing

strings into and from the queue vs. the one-time repositioning of the file--

seemed moot. The use of the text queue, however, required that the copying

function also needed access to the queue. Manipulation of the queue in copy-

ing seemed less straightforward and much different from this scanning function.

Simplicity and similarity finally won out.

As long as the bgn_match[n] string is non-null, there is a match to be found;

otherwise, the string matching condition is considered satisfied. Whenever a

match is satisfied, its count is decremented, and the next occurrence of the

bgn_match array is sought (at n = 0).

Upon reaching the context and count conditions, if the beginning offset was

zero or negative, the queued location of the line read bgnoffset lines earlier
is used to reposition the input file to next read at the specified line. The loop

breaks at this point and the function terminates.

If the beginning offset value is positive, then bgaoffset is decremented to

count (and thereby skip) the line. If the offset (before the decrement) is one,

then the loop breaks and the function terminates, as the end matching condition
has been fulfilled.

If the function began without a context to be matched and no offset, then

the file is reset to the beginning, and the function terminates. If there was a

beginning offset only, an offset variable counts up until the specified offset is
reached before the loop is broken.

If, after the loop terminates, if bgn_match[0] and bgn_match[n] both are
un-nulled, this is an indication that a match was to be found, but was not. An

error message results in this case.

82 92-12

7.25 The copy_to_end_match() Function

The copy_to_end_match() function is again long enough that a segmented

presentation of its operation is warranted. The algorithm is similar to the

scan_to bgn_match() function earlier described (Section 7.24), except that
copying replaces scanning. The function and data declarations are

/eeeev**$$eee$$eeeeeeee$$$@eeeee$4*eeeeeeeeeeeeeeeeooeeeooeeeeeeeeeeeeeee/

BOOL - L - _ - _ " _

/0 Copy lines from nodulestrean to tSt_streoJa, up unti__ th e end-natC_

co_;Lit.ion is satisfied.]leturn TIIIE J_ an error gas 4mcountered,

printing the appropriate error messaKe; roe ur__ FALSE othergiso.

/, .. ./
FILE euodulestrean;

STRIIG end.match[] ;

int endcount, endoffsot ;

{
int Count,

err OIL"•

OffSet,

n•

qbz,

qex ;

Ion K qb,

qo ;

CHAR text [NLI[.LI]IE] ;

STR_]JG tXquoue [M_X_O'J ;

The variablesqb, qe, qbx, qex, and error operate as they did earlier;count

isthere to measure whether any copying actuallytakesplace. Unlike the ear-

lierfunction,which maintained a filepositionqueu e, thisfun_t!on maintains
a real text queue, txqueue[] because excessivedisk thrashing would re-

sult if a file-position queue approach funct!on were taken, as was done in the
scan to bgn match() function described earlier (Section 7.24). _

The function is otherw_every similar in structure to the scan-hn_tion. The

end of the queue is initialized to -1 because qe is incremented before it is used;

therefore the first element read will be inserted into queue slot 0. A loop gets

(and counts), queues, and copies text strings from the lmodulestream. When
an end matching context has been specified on entry, end_match[hi will be ilL

at the exit from the loop if the condition has been fulfilled. Hence, a non-NIL

match string signals an error condition. Similarly, a zero count means nothing

was copied--another error condition.

qe = -1;

n=O;

for (count = error • offset = O; fgetstr(text, mod_Llestroaa); count++)

{ J_ (endoffset <m O)

|

92-12 83

}
(end.na¢ch[O] AID end_amtch[n])

{ orror_amssageCEID.l_TCl_ERR, end__tch[n], TKUE) ;

error = TRUE;

}
i_ (10T count)

{ error_meseagoCl0.COPY_ERR, "", TRUE) ;

error = TRUE;

}
return error;

There are several if-clauses inside the loop above. The first is exercised

when there is a negative endoffset

{ if (endoffsot <= O)

{ qex = (int)(++qe HOD _Z_q);
If (leT (txqueue[qex] = strdup(¢oxt)))

{ error.nessage(MEMORY_EIJt, "", FALSE) ;

error = TRUE;

break;

}
if ((qb = qe + endoffeet) >sO)

{ qbx = (int)(qb HOD MAX_Q);

£ree (putli_e (txquouo [qbx])) ;

txqueue[qbx] = IIL;

}
if (endJsatch[n])

{ if (10T etre¢r(text, end_match[n]))

cong iJ_ue ;

if (endJaatch [++n])

cont inue;

if (--ondcou_t <= O)

{ uhi.le (qb <= qe)

}
else

}
}

{

}
break;

qbx • (int)(qb++ MOD NIX.R);

free ($xquoue [qbx]) ;

n = O;

A zero or negative endoffset causes the text to be inserted into the next queue

slot (if there is no memory error). If the queue has reached a length such that

the line at the beginning of the queue is ready to be transferred into the target

file, it is copied via putline() (Section 7.27), its memory allocation is freed,

and its former queue element set to NIL.
If an end_match[n] context exists and appears within the text string, the

next end_match [++n] context match is sought. When all individual end matches

84 92-12

have been made, endcount is decremented and the next series of context matches

are begun. When the count reaches zero, any enqueued text is freed, and the

loop terminates.

The remaining if-clauses inside the loop operate when endoffset is posi-
tive:

else i_ (endn_tchrn])

putliJte(text) ;

(gOT 8trstr(text, end_match[n]))

cent inue ;

i_ (end_hint ch[4_n])

cent inue ;

i_ (--endcount > O)

n=O;

)
else if (o_fset+_ ¢ endoffset)

putliae (text) ;

else

break ;

In the first of these clauses, if there is an unsatisfied ending string match, then

the text is put to the target file and the line is checked for a string match. If

there is a match, and if further matches are pending, the process continues.
Otherwise, the endcount is decremented. If there are still more contexts to

match, n is reset to O, and the next context is sought. When endcount reaches

zero, the end-matching context is fulfilled.

Once the end string match condition has been satisfied, the offset is checked;

if that part of the end condition is unfulfilled, the text copies into the target
file and is counted in offset. Finally, on reaching the goal endoffset, the end

condition is satisfied, and the loop terminates.

L

=

E

92-12 85

7.26 The fgetstr() Function

The purpose of the fgetstr() function is to obtain a string from a named

stream, replace tab characters in that string with spaces, and pass that string

back to the calling function, copytoendmatch() (Section 7.25). In addition,

fgetstr() removes trailing white space and replaces the ending newline.
An entire line at a time is fetched from the stream, unless an end-of-file or

anomalous condition has been reached. As each character of the input stream is

scanned two checks are made: If a scanned character is a tab (i.e., '_ '), a span

of spaces is inserted to align the next character on a multiple of the tab_width.

If a scanned character is not a space or other printable character, the garbage
character is substituted in its place. Otherwise, the character is written into

the parameter string intact.

**

STRIIG

fgetstr(s, stream) /* Get string s from the named strema glth

TABs replaced by spaces, and return it.

I. .. el
STRXIG s;

stream;

CHAR c,

p [RAX_LIgE] ;

int i,

J;
STRING q,

t;

(lOT

FILE *

{

(q = fgets(p, HAI.LIIE, stream)))

return |IL;

for (t = s, i = O; c = *q++;)
{ if (c IS '\t')

{ j = tabwidth - (i NOD tabwidth);

,bile (j--)

{ *t++ • ' ';

+÷i;

}

continue;
}
else if (gOT (isspace{c) 01 isprint(c)))

c = garbage;
*t++ m C;

i _'+;
}
*t = IPJL;

return $trcatCstrtrim(s), "\n") ;

86 92-12

7.27 The putl±ne() Function

The putline() function writes its string argument, column-adjusted in accord

with the last %coltma directive, to its stream argument, provided that the string
is not null and contains a newline. Null lines and lines not terminated in newline

are both considered anomalous.

STRZ|G

putline(s) /* Vrite the the string s onto the output stroala, properly

colmmat_l, The string ia preei_l to exist and contain

a nevlina. Count the output both as one of the

access.lines and ¢_c.linos.
/* ... -- *1
STILTIO s;

(
STP_BG t ;

if (s Jill) (t • otrchr(s, '\n')))

{ t = s + (coluam < 0 ? ain(-coluam, t - s) : 0);

fprintf(tgC_stroma, "_,s_s", spaces, t) ;

access_lines++ ;

t[_ _lines++ ;
}
re't;u,rn • ;

The local string variable t locates the newline, so t - s is the string length,

not counting the newline. If the coltma level is negative, the input string is to

be left-truncated by -column characters (the spaces string in this case wi|l have
length 0, set in response to the %coltmn directive). This is done by Starting the

actual printing at the proper offset later in a. In order that the s not be accessed

beyond the end point, the lesser of the two length alternatives is assigned to

t. If coltmn is zero or positive, spaces has been set to this length either by

default or by a %column directive; t is set to s in this case.

The writing of t preceded by spaces thus achieves the desired formatting:

For negative co:hen values, spaces is null, and if coluam is zero or positive,

spaces has this width.

The access_lines and l:gt_lines values are augmented to count the line

written both as one emanating from the access source as well as one written to

the target file.

92-12 87

8 TOP-C LIBRARY FUNCTIONS

Several calls to functions in my personal library appear in the Coq]oin program.

Listings of these appear in this section for informational and completeness pur-
poses only. None of these falls under the jurisdiction of the JPL copyright notice

placed on the source files or the copyright notice printed in this report.
These files all access appropriate #include files to assure that each ANSI

and TOP-C function reference conforms with its prototype declaration.

8.1 The stratr±m() Function

The stratrizn() function was patterned after the atri= function of Clipper: it

removes all leading and trailing white space of a given string and returns the
result.

**

STRIIG

stratrim(s) /* Trim all uhite space fro-. s, leading and tra41i_q;, and

than return s.

I* .. *I
STItlIG s ;

{
FAST STRI|G p;

p = strfnb(8);

strtcpy(s, p, strlen(p));

return strtria(s) ;

First, p advances to the first nonblank character of s; then memmove() copies

p into s, which left-justifies s. Finally, trailing white space is removed from

the end of the string. Copying uses memnove() because it properly handles

overlapping areas of string arguments.

88 92-12

8.2 The strdup() Function

This function originally appeared in Kernighan and Ritchie [26] under the name

strsave(). The same function later appeared in an ANSI C Standard draft

document and in various C run time libraries under the name strdup(). My
current Standard draft [27] l_as=:deieted-this function, so i wrote my own, to

make sure I could port things from one C to another.

/$$e$****$(,*0**4,$$$ $$*$$$e$$$o***$$$o*$$o$$*$$$@ee$$o$**$$$*$$$o*e***_***/

STJtIIIG

strdup(8) /* get enough 8torage /or s and put 8 there,

ret_--a pointer to the string, or |IL iY no

string space.

/, .. ,I
const STKIgG s;

{
STIIIJG p = BIL;

if (s lid (p " Ita_Ioc(etrlen(8) + I)))

strcpy(p, s) ;

return p;

92-12 89

8.3 The strfnb() Function

This simple function just skips any white space that appears at the beginning

of the string parameter and returns a pointer to the first nonb_iank character

(or to the il/L, if no nonblanks exist, or returns NIL if the given string does not

exist). The function is similar to stratrim(), but the latter actually removes

white space; strfnb() does not.

STKI|G

8trfab(s) /* Retura a pointer to the _irst nonbla_k character

in str_u K s, or to the IIUL if s is empty.
/0 .. ,/
STKI|Q •;

(s)

ghile (isspace (.s))

_et_rn 6 ;

90 92-12

8.4 The strinsert() Function

This function inserts one string at the beginning of another. The algorithm is

simplified using memmove (), which is guaranteed to transfer characters despite a
possible memory overlap. First the contents of $ are shifted right by the length

of t. Moving one character more than the length of s ensures that the s will
still end in IUL. Then, t is inserted at the beginning of s:

**

STRIIG

8trJAtsort(s, t)]* T_/e_t Itr_u_ t in Str_ S at the beSii_tg.

get_-_ i l_ter to i.

I, ... _............................ .I
STI_IG s, t;

{
size_t n;

me,move(8 + (n - strlenCt)), s, strlen(s) + 1);

neacpyCs, t, n);

return •;

Itisnoteworthy here that the memcpy() function copiesonly the n characters

of t,and not itsterminatingIUL, intos.

92-12 91

8.5 The strlwr() Function

This function rewrites the given string using lowercase alphabetic characters

wherever capitals appear. Some C libraries contain this non-ANSI function,

while others do not. To promote portability, I wrote my own version.

STRIIG

artist(s) /e Set 8 to lowercase and return s.

I, .. ,I
STS.I]IG s ;

{
$T_IIG p ;

if (e)

for (p = e; *p • toloser(ep); F++)

return s ;

92 92-12

8.6 The strnset () Function

This function replicates a given character a specified number of times into a

string parameter, and returns a pointer to this string. This function also appears
in some C libraries, but not in all, so I included it in mine, just to make sure.

]***$.$$.$_.$._._$_$$$t_,$.$ee_$e**ee$$e*$.J$ $$$ $$._***$ J$ t_$#b$e_,_$e$$ee./

STI_IO
8tz-nset(s, c, u) /* Return str_ s c_osed of n character o's.

I. .. ,/
STKIIG s ;

Jize.t n;

STRIIO p;

for (p = s; n-- > O; *p++ n (CHIR) c)

*p -]I_;
return s ;

92-12 93

8.7 The strtcpy() Function

I wrote strtcpy() to correct a misconception I had about what the ANSI

strncpy() function does. I believed that it copied one string into another for

a maximum of n characters, returning the copied string. It does not. Rather,

strncpy(s, t, n) copies n characters from string 1; to string s and then stops.

If no terminating _L is encountered, none is copied. Thus, if n is greater than

the length of the old s, but shorter than the length of t, then the NUL in s is

overwritten and none is copied from t. The result is that s has been turned into

garbage. My strtcpy(), on the other hand, is a truncated copy that always

puts in a terminating $UL into s.

/$$*$$$e$e$$$$$$$$$_$_$$$$$$@*$ee$$$$@o$$**$$$$$$e$$o$$$$t$,$$$$$$$$$$$$,/

STRIIG

strtcpT(8, t, n) /e Truncated string copy. Copy at most n CHARs

o_ t into s, and return 8. Mote: in contrast

to 8tracpy(), the returned copied 8 aleays ends
in IIUL.

I* .. ,I
STRlIG s ;

const ST_BG t ;

sizs_t n;

{
size.t m;

/f (s)
{ • = strlen(t);

n • RI|(n, -.);

mamovo(s, t, n);

*(s ÷ n) = IIUL;
}
return s ;

94 92-12

8.8 The strtrim() Function

The strtrim() function is invoked directly by fgetstr() of Section 7.26, and

also by stratrim() of Section 8.1. No algorithmic explanation is deemed nec-

essary.

**

$TKIIO

strtr/m(s) /e Trim trai/ing ghite space from s and return g.

I. .. *I
STI_IG s ;

{
FIST STRING p;

if (s lid *s)

for (p = strlch(s); Isspacl(ep) lid p >= s; p--)

*p = IUL;

ret_n 8 ;

}

92-12 95

9 MAINTAINING THE Co_:_oin PROGRAM

The Co_roin system described here--documents and code--are automatical|y

built by .MAK files (See Appendix B). When it is time to process a report or

other document within the system, the user engages the MMfE facility, which in
turn calls the compiler, TEX, and other special processors that create updated

products.

These files may require alteration to conform with the user's development en-

vironment, whenever a different compiler, directory structure, or set of utilities

is present.

92-12 97

10 ERROR MESSAGES

Error messages take the form

file line offset message

where file names the source file in which the error occurs, line is the offending

line, offset is the approximate character on line where the violation occurs, and

message is a diagnostic message. Such error forms can be used by some text

editors for automatically placing the cursor on the lines for correction.

(1) Beginning match string not found: match_string.

The given match_string could not be found in the file named on the
Zaccess directive.

(2) Break string is invalid: break.

An invalid break string has been detected. This occurs when no instance

of the break string is found on the Y,access directive line.

(3) Command line error:

An error on the invoking command line has been detected. File name and

location information is omitted. Causes of this message are

• Unknown option. The command line has a string argument begin-

ning in '/' or '-' that is not recognized as an option.

• Unknown command. The command line has a string argument unrec-

ognized as either source or target file name.

• No such file or directory. The filecannot be located.

(4) End-match string not found: match_string.

The given ending matchstring could not be found in the file named on
the Zaccess directive.

(5) Input and output files may not be the same: name.

The target file is not permitted to overwrite the source file. File name and

location information is omitted from the message.

(6) Memory insufficient for queue.

Memory is unavailablefrom malloc() to queue the Zaccess stream.

MAX_Q may be set too large,or too many "terminate and stay resident"

programs may be inmemory. Try removing some ofthe TSR's, or failing

that, recompiling Co_7oin with a smaller MAX_0.

(7) No access file found: name.

The file name given in the Zaccess directive could not be found. Check

the file name, its spelling, and Zpath directives for locatability.

PRE@EEHNG PPlGE BLANK NOT FILMED

98 92-12

(8) l{o lines copied from accessed file.

Y.access has failed to transcribe anything from the file named in the

directive. This often happens as a result of misspelling in the starting

match_siring. The error message is also put into the target file.

(9) Range separator missing.

The _access directive has the range_separator absent between the two

match-strings.

(10) Size command case invalid: case.

A Y.size case other than C, a, T or r has been detected. A zero is substi-

tuted into the text at this point.

92-12 99

APPENDICES

A Conjoin PROGRAM LISTING

I<lefine RltSIOI "(08-Apt-1992)" /* (Conjoin.c)*/

char copyrtghtnotice[14] [76] I

{ ,,IIINIIIllllIIIII 1llllllllllltlllllttClllll_lllllll_4_lltlll_l_llllllllll#l",

Copyright (C) 1992, California Institute of Technology

All rights reserved. O. S. Government sponsorship under |ASA

Contract |1S7-918 is acknouledged.

,,#

,., S",

"S #" •

,,$ #",

,,# #",

,.# Robert C. Tauegorthe #",

"# Jet Propulsion Laboratory #",
"S 4800 Oak Grove Drive |",

,,# Pasadena, CA 91109-8099 S",

"8 #",

};

/*
ilSI STAIDIRD HEADER FII.ES ./

#include <ctype.h>
#include <errno.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <time.h>

DEFIIITIOIS •/

tTpedef int BOOL;

typedef unsigned char CRAK;

typedef nasigned char • STklIG;

8define GLOBIL •xtern

Idefin• LOCAL static

Ikl•fine IIL ((void 0) O)

Iktefin• BtR. 0

#define FALSE 0

Ikiefine TKITE 1

100 92-12

#define AID &#

#defiae IS =u

$define JOT !

8define HOD %

8defJ.ue OR JJ

#ifndef FILE|IIqE.MIX

8define FII_|kME_MIX 50

tendif

#define]qAX°CO|TEXT 10

$define _X.LIIE 135

Idefine]UX.q 100

#define]R/MBER_OF.PATRS 20

#define PAGE__DTW 75

#define OPEI.CONRE|T "%"

#define CLOSE_CO|NEff

#defi.ne CSMNE|T_LEIGTH I0

#define ACCESS_SIG|LL OPE|_CO)O(ENT "access"

#define BREAI_SIQIAL OPEI.COHI4ENT "break"

#define COLUM|_SIG|IL OPEN.COMMENT "column"

8define COUIIT_SIGIAL OPEI_COIqME|T ;'count"

IdefJme GIRBIGE_SlGIkL OPEl_COMMENT "Karbage"

8define PkTH_SIGIIL OPEl_COMMENT "path"

#define POSTFZX.SZQIAL OPEI.COJ_EJT "pootfix"

|define PREFII.S!GIIL OPEN_CO_T "prefix"

#define 14|GE_SIG|AL OPE|'¢_ "range"

#define SBOV.S_G_IL OPEl_COMMENT "show"

#define SIZE_SIGIIL OPE|_COMNEIT "size'_

Idefine TAB.SIGILL OPEl_COMMENT "tabs"

#def ins BREIE.DEFkULT ","

#define COLUM|.DEFAULT 0

#define COUMT.DEF!ULT "#"

#define GARBAGE_DEFAULT '#'

#define OLD.TYPE.DEFAULT ",T_X"

#define POSTFIX.DEFAULT "\\end {verbat_t}}"

#define POSTVERBITIM "[%n\n"

#define PREFIX_DEFAULT "{\\footnotesize \\begim{verbatiu}"
#define PREVEI_ATIM "\knoindent \\verb["

#define RAIGE_DEFAULT "'"

#define 8EOW_DEFIULT FALSE "

#define TAB.DEFAULT 8

#define TGT.TYPE.DEFAULT ".TeI"

#define BG|.MATCH_ERR 0

#define BREkE_ERR 1

#define (DID.LIME.ERR 2

#define ENb_MITCI_Ek_ 3

#detine lOjSixE_m 4
#define MENORY_ERR 5

#define BO_ACCESS_ERR 6

#define |O_COPY_EItR 7

#define I_IGE_ERR 8

#define SIZE_ERR 9

k |

92-12 101

Sdsfine FGETSIZE(s) strdup(strtr_a(fgets(s , N/I_LINE, slze.strea--)))

/S " " S

TOP-C FUICTI01 PIt0TOTYPES ,/

GLOB&I, STRI|G

GLOBAL STRIIG

GLOBAL STItlIG

GLOBIL STg.IIG

GLOBAL STBIIG

GLOBM., STRIIG

GLOBAL STRIBG

GLOBAL STRIJG

stratr_(STKI|O)';

strdup(STRIIG) ;

strfnb (STRIIG) ;

strinser$CSTltXIG, STltlIG) ;

strlrr (ST_IG) ;

strnset(STRllG, LUg, int);

strtcpy(STRllO, STUIG, _nt) ;

strtrii(STRIJG) ;

/e - .. •

FUICTI01 PROTOTYPES e/

int main(Ant, STRIBG []);

LOCAL B00L

LOCAL BOOL

LOCAL void

LOCAL void

LOCAL B00L

LOCAL B00L

LOCAL B00L

LOCAL void

LOCAL STRIIG

LOCAL void

LOCAl. FILE *

LOCAL STRIIG

LOCAL B00L

LOCAL FILE *

LOCAL void

LOCAL void

LOCAL STKIIG

LOCAL B00L

LOCAL STKIIG

LOCAL void

LOCAL void

accese(STRISG);

access_condition(STRING, STRZIG [], int e, int e, int);

announce(void);

comand_line(int, STBIIG [], STRIBG);

ConJoin_fi-les(void);

copy_to_end_aatch(FILE *, STRI|G [], int, Ant);

directive(STRIlG, STRI|G);

e_ror_message(int, ST_IG, BOOL);

fgetstr(STRliG, FILE e);
_:J_e_de_aults(void);

f_e_open(ST_JG, STRIIO);

r_ht_f_I(STRIMG, int);

match_paraaeters(STRIlG, STRIIG, STRIIG [], STRIBG [],

Ant ,, int ,, :l_t*, int *);

open_acceee(STRllG);

open_io.f£1es(void);

initialization(Ant, STRIIG []);

putline(STRIlG);

scan.to_b__aatch(FILE e, $TRIIG [], Ant, int);

strext(STBIBG, STBIBG);

tJleetaEp(void);

usage(void);

/& ... - •

LOCIL DATI STRUCTURES e/

LOCIL long
LOCAL CHAR

LOCLL int

LOCLL CHAR

access_lines;

close[COlOIErr_LElGTH] = CLOSE_COIOIEIT;

column = COLUMI.DEFAULT;

ConJoin_file[FILEllME.l_tX] =,

102 92-12

LOCAL long ConJoin_lines;
LOCAL FILE • ConJoin_streau - NIL;

LOCAL STKI|G countsignal = COUNT_DEFAULT;
LOCAL BOOL credits = TRUE;

LOCAL CHAR garbage = GARBAGE_DEFAULT;
LOCAL STUNG last_acc.lines = NIL;

LOCAL STRIIG laet.CJn_lines = NIL;

LOCAL STRING last_tgt_lines - |IL;

LOCAL STRI|O last.use_lines = HTL;

LOCAL CHAR nark[lO] = BKEAH_DEFAULT;

LOCAL CHAR open [COMMEIT.LENGTH] = OPE|.COMHEJT ;

LOCAL STRING path.list [lUMBER_OF_PATHS] ;

LOCALinn path,liet,.ize = O; _
LOCAL CHAR postfix[KaI_LIJE] = POSTFIX.DEFAULT;

LOCAL CHAR postVerbat-ia[30] =_P_iTI_;

LOCAL CRi_ prefix[MaX_LINEN = PREFIX_DEFAULT;

LOCAL CHAR preverbatin[30] = PJtEVERBATIH;_:

LOCAL CHAR range[lO] = IrA][(IN_DEFAULT;

LOCAL BOOL shoe = SHOU_DEFAULT;

LOCAL CHAR size_file[FILEIA_E_P_I] = "";

LOCAL CHAR spaces [HAX_LIRE] =;

LOCAL inn tabgidth = TAB_DEFAULT;

LOCAL CHA_ tgt_file[FILEllME.MAI] = "";

LOCAL long tgt_lines;

LOCAL FILE • tgt_strems = IIL;
/* aain e/

/eeeee44444eeee_.4444ee4444444ee44444eeee_eeeee$44444444ee4444444eeeeee_e/

nain(argc, argv) /e Process a conjoin file to create a target file.

Return a FALSE value if no failure occurs, or

TRUE or other nonzero value if a failure was

encountered.

/. .. ./
STRING argv[] ;

{
BOOL failure ;

FILE *size_stream ;

inn i;

initialization(argc, argv); /4 terninates if no source file rimed 4/

open.io_files(); /4 terminates on failure in openin 6 files */

access.lines = ConJoin.lines = tgt_lines = O;

tiaeet aapO ;
failure = ConJoin_files();

failure [= fclose(ConJoln_stream) [fclose(t__streal) ;

for (i = O; i < path_list_size; i ++)

free(path_list [i]) ;
free (last_acc.linee) ;

free (last.CJn_iinea) ;

free (last_tgt_lines) ;

free (last_use.lines) ;

printf("Processed:\n_lOld _s source lines\n%10Id accessed lines\n"

"%lOld _s total lines written\n", Conjoin_lines, ConJoin_file,

access_lines, tgt_lines, t__file);

if (size_strea_ = fopen(size_file, "w"))

92-12 103

{ fprintf(size.etrean, "T, ld\nZld\n_ld\n_.3f\n", Conjoin_lines,

access.lines, tgt.lines,
(double) access_lines / (double) tgt_lines);

fail_re I= fclose(size.strea TM) ;

)
return faJ._ure ;

/* end --in */

/* initialization */

**

void

initialization(argo, Lrgv)

/* Process cosma_d line fi_e names and options, and retrieve

size__J_e statistics.

/. .. */
STRIIG argv[] ;

{
CRhR meg [MIX_LIME] ;

STRIMG s ;

FILE *size_stream;

co_mxnd_line(arg¢, argv, _sg) ;

_o_ce() ;

if (*Bg)

{ usage() ;

erTor_message(CI_.LIl__E_t, asg, FALSE);

exit (TRUE) ;

}
file_defaults () ;

if (llOT 8traap(ConJoin_£ile, tgt_file))

{ strcpy(asg, ConJoin_file) ;

*ConJoin_file = JUL;

usage() ;

error_nessage(IO_S/HE_ERA, nsg, FILSE);

exit (TRUE) ;

}
strcpy(strchr(s = strtpy(slze_£J._e, t__£ile), '. _),

if (size_stream = fopen(size_£ile, "r"))

{ lant_CJn_lines = FGETSIZE(asg);

last_acc_lines = FGETSIZE(asg);

last_tgt_l_uee = FGETSIZE(Isg);

last_use_lines = FGETSIZE(nsg);

fclose (size.stream) ;

}

"six") ;

/* emi initialization */

/* ¢o=aand_line */

**

void

colund_line(Lrg¢, Lr_, =_g)

/e Process _fornation on the c_and line: extract ConJoin.fJ_e

and tgt_file nsmes, and option -a, short present. Return uith

Bsg set to error conditions.
I, .. *I
STRIIG JLrgV[], meg;

104 92-12

_g = 1UL;

for (i = 1; i < argo; i+÷)

{ s - strl_r(ar_[i]);
if (*s IS '-' OIL *s IS '/')

(sgitch (*++S)

{ case ;8, _ :

credits = FALSE;

bro ak;

default :

sprintf(--S ÷ strlen(asg), "Unknown option: "

"_s. \n'*, arg, [i]) ;

}
*ar_,[i] - JUL;

}
else if (let *Conjoin.file)

str_y(ConJoin:file, s) ;
else if (MOT *tgt file)

strcpy(tgt_fJle, s) ;

8prlntfCasg + strlsn(asg), "Unknown command: _s.\n", s);

}
if (IflT *ConJoin_file)

strcat(msg, "Me Source file named._n') ;

/* end comnand_line */

le a_nounge */

**
void

u.oanceO /e Announce program, copyright, and author.

{
int i_

if (credits)

{ for (i = O; *copyrightnotice[i]; i++)

printf(°'_s\n '' , ¢opyrightnetice[i]);

printf("\n\t\t\t Conjoin Pro_'aaJ"

"_n\t\t\t _s_n\n", VE_SIOB);

}
}

I* end 8xmo_mce */

/* error_mssago */

**

void

error.nessage(n, s, f) I* Vrite error message n augmented uith string s

to stdout, indicating the _urrent line in the

source file. Kepeat the m4ssage on the target

file if f is TITUS.

/, _ -/

STRIBG s;

92-12 105

LOCAL STRIBO err=ng[] =

{ "Beginning match str_-ug not found: ",

"Break string is invalid: ",

"Co_s_id line error : ",

"Endlatch string not found: ",

"Tnput and output files may not be the stage: ",

"Henory insufficient for queue.",

"|o access file found: ",

"|o lines copied fron accessed file.",

"Range separator aissing.",
"Size co--sand case invalid: "

);

if (*ConJoin.f J.le)

printf("\a%s, _Id 1 : _s_s\n",

ConJoin.file, ConJoin_lines, enlsg[n], s);
else

printf("%s%s\n '°, er_ng[n], s) ;
if (f)

fprintf(tKt_stream , "***EKItOReee %s%e_n", errasg[n], s);
}

/* end error_message e/

/" usage -/

void

usage() /e Print a message on usage syntax of ConJoin.

/. .. e/
(

printf("Usage: ConJoin <Conjoin source> <target file> "
"[<options>] \n\n"

"\tSource file type default is .C3n_n"

"\tTazget file type default is %s_n_n"

"Opt ions : \n"

"\t-a Do not a_nounce the progral.\n", TGT_TYPE_DEFAULT);
}

/* end usage */
/e file_defaults s/

/*eeeeeeseeeeeeeeeeeeeeeeeee_,esseee,eeeeeeeeee$@$$$$@eeeees$,eeee@$,$ $$,e/

void

file_defaultsO /e Supply ConJoin file type .CJn if hissing, and

supply missing parts of tgt.file, if an T.

I. .. el
(

STRING s ;

if (|OT (s = strchr(ConJoin_file, '. ')))

strcat (ConJoin_file, ". CJn") ;

if (ROT .tgt_file)

{ strtcpy(tKt_file, Conjoin.file,

strchr(ConJoin.file, '. ') - ConJoin_file) ;

}
if (]JOT (s = etrchr(tgt_file, ;.;)))

strcat (tgt_file, TGT.TYPE.DEFiULT) ;

106 92-12

}

/, end file.defaults ,1

/* open_io.files o/

vo id

open.io_fileoO /* Open Conjoin_file mad tgt_file into Conjoin_stream

and tgt.etream. Rename old tgt_file, if any,

with OLD_TYPE.DEFIULT. Terminate with an error

nmssage via file_open() if f_qe| cannot be opened.
I, .. 01

CHAR t gt _bak [FILE_ANE_IqAZ] ;

FILE * f;

STKI|G •;

ConJoin_etrea- = file_open(ConJoin__J_le, "r");

(f = fopen(tgt._ile, "r"))

{ fclose (f) ;

, = ,trchr(etrcpyCt__bak, tgt__ile), '. ') ;

etrcpy(s, OLD_TYPE.DEFAULT) ;

remove (tg_.bak) ;

rename(t__file, tgt_bak) ;
}

tgt.strelm • file_open(tgt_fi].e, "v") ;

}

I* end open_io.files */

/* file.open -/

**

FIlE *

file_open(name, _Je)

1* Open the name file for given use, and retux-fl reSultin K stream.

If file cannot be opened, print reason, and abort processing.

/, .. ,/

STILI|G name, use;

(

CHAR s [NIX.LIME] ;

FILE * Stream;

(JOT (stream = fopen(nm*, use)))

{ strcpy(s, name) ;

enmne = IIUL;

strncat(strcat(e, ": *'), strerror(errno), K/I_LIgE - I) ;

error.messaKe(CMD_LIBE_ERR, s, FALSE);

exit(TRUE) ;

}

return stream;

I* end file_open *I

I* timestanp *I

**
void -

timestamp() /* Mrite the aRt_file name and a rime'stamped header vith

a revision warning onto the aRt.stream.
I. .. *I

{

92-12 107

tine_t clock;

CHAR at ires [26],

bar [HaI.LIME],

blanks [KII_LIBE] ;

STKIJG sp, text ;
struct tm• t ;

int n;

n = strlen(open) + strlen(close);

strnset(ba_, J=J, PIGE_VIDTH - n) ;

8tz_set(blaJlkS, ' ', PAGE_WIDTH - n- 2);

t JJne(&clock) ;

t = localt_(tclock) ;

stratrim(strcpT(atiJte, asctise(t))) ;

sp = right.fill(ntJJae, strlen(tKt_fils) + n + 5);

fprintf(tgt_stream, "_s (_s)_s(_s)_s\n", open, atlas, sp,

tHe_file, close) ;

fprintf(t_t_stream, "_s_s_s\n", open, bar, close) ;

text = "%el This file was ConJoin-ed from input file _s._sJ%s\n";

sp = right_fill(text, strlen(ConJoin_fils) - n - T);

fprintf(tKt_streoJa, text, open, ConJoin_file, sp, close);

fprintf(tgt_stream, "_sl_sJ_s\n", open, blanks, close);
text = "_sl DO JOT REVISE THIS FILE.%sl%s\n";

fprintf(t_t_stream, text, open, right_fill(text, n - 7), close) ;

fprintf(tgt_strean, "%sJ%sJ_s\n", open, blanks, close);

text = "_8J To make revisions, modify the original file._sl_s\n";

tDrintf(tgt_stream, text, open, right_fill(text, n- 7), close);

fprintf(tgt.stream, "_s%s_s\n", open, bar, close);

tHe_lines += 8;

/* end tJJsest81p e/

/e right.fill e/

STRIIG

right_fill(s, n) /e Oenerate spaces as a blank string of length

PAGE_UIDTH - n. Return spaces.
/. .. ./
STRIIG s;

{
return strnset(spaces, _ ', PAGE_¥IDTH - strlen(s) - n);

}
/* end right_fill e/

/e ConJoln_fi_es e/

/eeeeeeeeeeeeeeeeseeeeeeeeeveeeeeeeeeeeeee_eeeeeeeeeeeeeeeeeeeeeeeeeeeeee/

ConJoin_files() /* Process the Conjoin source file and create the

expanded target file. Return a nonzero value
if an error occurs, or a o value if none. Count

ConJoin_lines, access.lines, and t__lines.

/. .. ./
{

BOOL error;

CHIK hold[MAl_LIJE],

line[Nil_LIME];

108 92-12

STRIJG extr•ct;

error - FILSE;

*sp•ces • |UL;

for (Conjoin.lines = O; fgets(line, MII_LIIE, ConJoin_stress);)

{ ConJoin_lines++;

t__lines++;

if (lOT *strfnb(line))

{" tprintf(t&t.stroaa, "_s", line);

continue;

}
if (strstr(iins, open))

{ if (extract • strstr(lin•, £CCESS_SIGJ£L))

strcpy(hold, line);

error {: directive(extract, line);

)
else

extract = BILl

fprintf(tgt.streals, "_s", line);

(extract)

error i = •ccess(hold + (extr•ct - line) +

•trlen(ICCESS.SIG|AL));

}
return offer;

/* end Co_oin_fil•s */

/* directive */

BOOL

directive(extract, text)

/* Process Conjoin directives th•t aa 7 appear in the text string.

If extract is non-|TL, the text contains an •ccess directive

that nay only need to be prepared for shos-ing. In case of

_s_ze, write the appropriate v_ues into text. Insert

proverb•tim and postverbatii into text if show is, or has just

turned, TRUE. _*turn TItUE if • bed _ize case appears; FLLSE

otherwise.

/, ... */

STRI|G extract, text;

{
STP_|6 s,

t;

CEAR &,

IIne[MLX_LIIE];

BOOL changs.show_

strcpy(l_e, text); _ ,:_

if (extract)

t • line + (extract - text);.

else if (t • strait(line, BRr_I.$1GILL))

strext(mark, t + strlen(BILEll_SIGEkL));

else if (t = strstr(line, COLUMI_SIGJLL))

{ colm = atoi(t + strlen(COLIMI_SIO|LL));

if (col--- • O)

{ strnset(spaces, _ ', Co2uRn);

92-12 109

}
else if

else if

{

}
else if

}
else if

else if

else if

else if

}
else if

(

col_,m = O;

}
else

espaces = I_JL;

(t = strstr(line, COUFr.SIG|AL))

strezt (countsignal, t + strlea(COUIT_SYGIAL)) ;

(t = strstr(llne, GARBAGE.SIGIAL))

if (g = estrfnb(t + strlen(GaRBAGE_SIGBAL)))

garbage = g;

(t = strstr(line, PATU_SIGIAL))

path_list [path_list_size++] =

8trdup(strext(t, t + strlen(PATH_SIGIAL))) ;

(t = strait(line, POSTFIX_SIGBAL))

strext (postfix, t + strlen(POSTFIX_SIGgAL)) ;

(t = strstr(line, PP_FIX_SIGIAL))

strext (prefix, t + strlen(PREFXX_SIGBAL)) ;

(t = strstr(line, Ri|GE_SIGBAL))

strext (range, t + strlen(RA|GE_SIG|AL)) ;

(t = strstr(line, SHO¥.SIG|AL))

s = etrlwr(stratria(t + strlen(SHOW_SIGJAL)));

if (|OT strc_(s, "on"))

change_shoe = TRUE + TRUE;

else if (gOT strcnp(s, "off"))

change_show = TRUE + FALSE;

if (change_show AID |0T shoe)

shou = change_show - TRUE;

(t .= strstr(llne, SIZE_SIGIIAL))

do

{ et = IUL;

sgitch (e(t = strfnb(t ÷ strlen(SIZE.SlG|AL))))

'_ case JC J :

case PC _ :

s = last_CJn_lines;

break;

case Ps 9

case JA; :

s = last_acc.lines ;

break;

case It9 *

case JR; :

s = last_use_li_es;

break;

cae@ _t ; :

case 'T' :

s = last_t_:_lines;

break;

default :

s = "0";

error_meseage(SlZE_ERi, text, FILSE) ;

return TRUE;

)

110 92-12

sprintfCtext, "_s_s_s", line, s, ++t);

} while (t • strstr(xtrcpy(line, text), SIZE_SIGIaL));

}
else if (t = street(line, TAB_SIGNiL))

tabwidth = atoi(t + strlen(TAB_SlGEJL));

if (t AID show)

{ strinsert(text + (t - line), preverbxtia);

if (eclose AID (t = street(text, close)))

strinsert (text, postverbatin) ;

else

strcat(stratrin(text), postverbatia) ;

i:r (change_show)

shou = change_show - TRUE;

)
return FALSE;

} :: /e end directive e/

/e strext e/

/ee,e******e***eeee,eeeee_***eeeeee_*eg,_ee_***eee*eeeeee*eee*e*eeeee/

$TRi|(] : _=2-_ _=.:: : : :: :

strext(s, t) /e Extract strin K t up to the close-conment str_, if close

is not nu.ll, or to the end of t if null, into e. Remove

leading and trailing blanks from s and return s.

/e .. e/

5T]L_IG s, t;
{

STKTIG p ;

f (eclose 110 (p = strstr(, close)))

strtcpy(s, t, p - t);

else

xtrcpy(e, t);

return stratrim(s) ;

}
/* end strext */

I* access el

BOUL

access(buffer) /* Process the text extraction operation specified

in the line bu_er to the tgt_strema. Return

FALSE if no error, TRUE if an error occurred.

I, - ... *I
STlUJlG buffer;

{
STRZ|G

CHaR

_OL

FILE *

int

bgn_natch[llLl_COITElT + 1],

end.natch[NLl_COlTElT + 1] ;

module [FILE]lIME_MIX] ;

error;

modulestream;

bgncount,

bs_noff set,

endcou_t,

endo_fset,

i;

92-12 lll

strext (buffer, bu_er) ;

if (satch.para_sters (buffer, module, bgn.aat ch, end._atch, kbgncount,

&bgno_fset, &endcount, aendoffset))

return TRUE;

if (UOT (modulsstrsal = open_access(module)))

{ error_messageC|n_lCCESS.ERR, aodule, FALSE) ;

return TRUE ;

}
printf("%saccess _s%s\n", open, buffer, close) ;

if (*prefix)

fprlntf(t_t_stroal, "_s_n", prefix);

error = scan.to.bp.aatch(aodulestrem, bgn.match, bgncount,

bKnoffset) ;

error [= copy_to_end.aatch(aodulestresa, end_match, endcount,

ondoffset) ;

for (i = O; bgn_aatch[i]; i++)

free (ben_mat ch [i]) ;

for (i = O; end_match[i]; i++)

f re • (end_mat ch [i]) ;

error [= fclose(modulestreal);

if (*postfix)

fprintf(t__streaa, "_s\n", postfix) ;

return error;

}
/* end access0/

le aatch_parmasters */

BOOL

match_paraReters(buffer, module, bgn_jatch, end_aatch, bgnco_ut, bgnoffset,

endcount, sndoffset)

/* Extract access aodule name, and beginning and ending access

conditions. Return TRUE if an error is encountered, FALSE

otherwise.

/, .. */
STP.IBG buffer, bgnjaatch[], end_match[3, module;

int *b_encount, ebgnoffset, eendcount, eendoffset ;

(
CH&IL lJ.ue [NII_LIIE] ;

STRI|G s,

t;

if (|OT (s = strstrCstrcpy(line, buffer), Mark)))

{ error_lessags(BREaK_EltR, buffer, FALSE);

return TRUE;

}
stratrim(strtcpy(module, line, s - line)) ;

if (SOT (*(_ = strfnb(s + strlen(mLrk)))

liD (s = strstr(t, range))))

{ srror__ssage (ItAIGE_ERIt, buffer, FALSE) ;

return TRUE;

}
es = IUL;

s += strlen(range);

if (access_condition(t, bgn_match, bgncount, bgnoffset, 1))

112 92-12

retun_ T_IE;

if (access_condition(s, end_match, sndcou_t, endoffsot, -1))

return TILUE;

return FALSE;

}
/* end watch_parmtore e/

]e access_condltion e/

**

BOOL

access_condition(buffer, match, count, offset. Ini¢)

/* Extract access condition from ballot. Sot offset to J.uit if

no offset is parsed in the b_LffOr. Ret_ T]U,_ if an orToT

is emcon-tered, FALSE othergise.

1. .. *1

STRI|G buyer, watch[];

_t ecount, eoffset ;

{
£nt n;

STRI|O s, t;

*o_set • init;

*count m 1;

S = stratr_a(bu_fer);

if (t = strstr(s, countsi_na.l))

{ *count • atoi(s = t + strlen(countsignal));

et =BUL;

}
if ((t = 8trchr(s, '+')) OR (t = strchr(s, '-')))

{ eoffset = atoi(t);

*t • FOL;

}
else if (isdiKit(.bu_fer))

{ *offset = atoi(bu_er);

*bu_+fer = IJUL;

}
s = buffer ;

for (n = O; el AiD n < _X_COITEXT; n++)

{ if (t " strstr(s, mark))

{ et = IUL;

t += strlen(mark);

}
watch[n] = strdup(strtrlm(e));

s • str_nb(t ill) *t ? ¢ : s + strlen(s));

}
if (n > 0 liD watch[n - 1] IS ITL)

rstu_a TRUE;

watch[n] = IlL;

return FALSE;

}
/* end access_conditlon */

1. open_access *l
**

92-12 113

FILE *

opsn_acceu(fil*) /* Open the specified file for read/_q_.

I, .. ,I
STiI|G file;

{
int i;

CHIR path [FILE|IHE.Hil] ;

FILE * stream;

strcpy(path, file) ;

for (i = O; lOT (8trsoJa = fopen(path, "r")) liD i < path_list_size; i++)

strcat (atrcpy(path, path_Slat [el), fL1e) ;

return stream;

}
/* end open.access e/

/0 acan.to_bgn.natch e/

**

BOOL

scnD_to.bgD_match(iodulestream, bsn_match, bKncount, bpoffset)

/e Scan the nod_estream for the beglnn_q_ hatch condition and

return positioned to access the first llne to be copied.

/,/
FILE * modulestrean;

STRIIG bgn_match[] ;

int b_count, bgno_sst ;

{
fpos.t fp,

f_Jueue [lUX_R] ;

J.nt n,

o'f"f set,

qex ;

BOOE error;

long qe;

CHaR text [P./J[_LIIE] ;

n I error Is Offllt i O;

qe = -1 ;

ehile (10T fKetpos(nodulestream, &fp) AiD

fgetsCtext, M_[.LIIE, nodulestreaa))

{ q*z = (int)("+q* NOD lqAX_q);

fpqueue[qez] = fp;
if (bgnjaatch[n])

{ if (lOT street(text, bgn_match[n]))
c ont inue;

If (bKn_match[++n])

c one inus ;

if (--bgncount <= O)

{ if (bgnoffset <= O)

{ qsz • (int)((qs + b_offset) MOD IUX_Q);

fsetpos (modulsstrsam, &fpqueue [qoz]) ;

break;

}

114 92-12

elme 2f (b_o_set-- IS 1)

bre Ik;

)
Illl

n=O;

}
else t_ (lOT bglloggset)

{ tsetpos(nodulestre--, t_pqueu, [qez]) ;
break;

}
else 2_ (++o_set >= b_o_set)

break;
}
Jf (bsa.mteh[O] rid bs=_mtch[a])

{ error.mseage(M|.lqITCR.ERR, b__matcb.[n], TRUE) ;

error = TRUE;

retllY31 orl'ol";

$T_JG

int

{

/* end 8caa_to_bgn_mmtch */

/* copy_to_end_arch */

BOOL

copy_to_end.,,atch(mod_eetremm, end_mtch, endco_t, endoffeet)

/* Copy 1lees _roa modu_estremm to t_t_stre--, up unti.1 the end-match
condition is satisfied, ltetura TRUE i_ _ error glut _cou_tered,

print_ the appropriate error leJJX_,; retl_T_ FALSE otherwise.

I* .. *I
F_LE *modulestreau;

ead__atchf J ;

endcount, endof_set ;

J.llt ¢onnt

@1"1" Or •

O_eet

qbx,

qez;

lon 8 qbº

qe;

_lilt text [HIZ.LIIE] ;

STKZ|G tzqueue [I_L][_D] ;

qe • -X;

11=0;

tot {count - error = offset • O; _Ketetr{text, moduleetreaa); count_-_)

{ 4f (endo_'_set <-O) -

{ qex • (t.nt)(++qe HOD l_tX.Q);

J_ (]lOT (txqueue[qez] = etrdup(text)))

{ er1_or.lmsea_o(PI_/ORY_EIUt, "", FALSE) ;

error = TRITE; -

break;

}
if ((qb • qe + endo_£eet) >=0)

{ qbx • (int)(qb NOD l_k][_Q) ;

92-12 115

free (pntline (tzquene [qbz])) ;
txqueue [qbx] • BIL;

}
if (end_march[hi)

{ if (|OT strstr(tsxt, end_match[n]))

continua;

if (end_match[÷÷•])

continua;

if (-°endcount ¢= O)

{ uhile (qb <= qe)

{ qbz = (int)(qb+÷ NOD RLX_Q);

frooCtxqueue[qbx]);

break;

}
else

else if (end_match[n])

{ putline(text);

n=O;

if (BOT strstr(tezt, end_march[hi))

continue;

if (end_match[++•])

continue;

if (--endcount • O)

_=0;

else if (offset++ < endoffset)

putline(text);
else

break;

}
J/ (end_march[el AID end_march[hi)

{ error_message(EID_MJTCH.ERR, end_march[hi, TRUE);

error • TKUE;

if (|OT count)

{ error.message(lO_COPY_ER/t, "", TRUE);

error = TRUE;

}
return error;

}
/e end copy.to_end_starch e/

/e fsetstr e/

STBIIO

fKetstr(s, stream) /e Get strin K s from the named stream gith

TABs replaced by spaces, and return it.

/, .. ./
5TBIIG s;

116 92-12

FILE *

{
stream;

CHili c,

p[MtI_LIIE] ;

int i,

j..
$1"I_IG q,

t;

i_ (lOT (q = fgetsCp, IIAI.LIIE, stre--)))

return |T;_;

for (t = 8, i = O; C • *q++;)

{ i_ (¢ IS '\t')
{ j = tsbuidth - (i HOD tabgidth);

while (j--)

{ st++ • ' ';

}
cont _Jlue ;

else if (lOT (isspace(c) OR isprint(c)))

C = garbage;

*t4_ m c;

i÷+;

}
*t • IUL;

retl_Lr_ eta'cat (str_r4..(s), "\n") ;

}
/* end :rgetstr */

I* putline *I

**

STP_IG

putline(8) /* grits the the str_ 8 onto the output stream, properly

colqmmated. The string is pressed to exist --d contain

a nevlin*. Count the output both as one of the

access_lines and tSt_lines.

I, ..*I
STltI|G s ;

{
STILII'6 t ;

if (s lID (t = strcbr(s, '\n')))

{ t = s + (coluan < 0 ? ain(-¢olu_, t - s) : 0);

:fprint_(tSt.stream , "_s_s", spaces, t) ;

access.lines++;

tgt _lines++ ;
}
return s ;

}
/* end putline s/

i, .. *I
I* end program *I

92-12 117

B Co o in CONSTRUCTION

B.1 The Master Document File

(30- Ju1-1992) (CJ_reprt ,Tel)

_II

ZI Copyright (C) 1992, California Institute of Technology •

ZI All rights reserved. U. S. Government sponsorship under |ASi B

_8 Contract |AS7-918 is acknowledged. •

7.I Robert C. Tausgorthe I

_I Jet Propulsion Laboratory •

Z• 4800 Oak Orove Drive •

%1 Pasadena, Ca 91109-8099 I

_IIIIIIIIIIIIIIIIII•IIllJIIIJII

JPL REPORT FORMAT

\documentstyle[taus,tgoside]{article} Z taus.sty is needed because it

contains the box shapes for Figure 1

and the JPL Repor_ foraat.

\new¢omand{\path}{CJ_}

\input{\path style}

\newcomsand{\Title}{Conjunctive Programaing: \\ An Integrative Approach to \\

Softgare Systel Synthesis}

\neecoIand{\PubDate}{AuEust 31, 1992}
\neecommand{\Doclumber}{92-12}

\neecommand{\work}{report}

\begin{document}

.............................. COVER PiGE

\pagestyle{Ipty}

\¢overpage{JPL Publication \Docluaber}{\Title}{\tnthor}{\PubDate}

Z.............................. FP&IT MATTER STYLE

\rl

\page s t yle {ayheadiugs}

_Iarkboth{\DoclIber} {\Do¢Iuaber}

\pagenumber in8 {roman}

\Ietcounter{page}{2}

.............................. NASA AID OTHER CREDITS

\input{\path credt}

............................... ABSTB£CT

118 92-12

\rectopage

\putaidpas*

{ \begin{center}

\large \bf Abstract\\[.3i_ _nomalsize

\end{center}

\begin{quota$ion}

\input{\path abstr}

\end{quotation}

.............................. acl|Ol/I,.E_gErr

\clearpage

\putaidpage

(
\begin{center}

\large \bf Icknoeledge_nt\\[.3in] \norlalsize

\end{center}

\begin{quotation}

\input{\path ackno}

\end{quotation}
}

.............................. TABLE OF CO|TE|TS

\rec¢opage

\begin{center}

\Large \bf Contents\\[.Sin]

\normalsize

\end{center}

\Tableofcontents

.............................. LIST OF FIGURES

\vspacs*{O.S/n}

\begin{center}

(\Large \bf List of Figures}

\end(center}

\Listoffig_res

.............................. LIST OF TABLES _

X MOTE: TNIS SECTIO| IS COMME|TED OUT BECAUSE |0 TABLES CUBREITL¥

EXIST Ii TBE REPORT,

_\vspace*{O.Sin}

X\begin{center}

{\Large \bf \noindent List of Tables}
_\end{cen¢er}

92-12 119

_\Listoftables

.............................. BODY ..

\rec$opage

\pagen_bering{arabic}

\setcounter{sec$ion}{O}

\$1tcounter{pagl){1}

\input{\path body)

............................... APPEIDICES

\sec_ionpaging

\appendix

\begin{center}

\Large \bf APPENDICES \vspace{.5in}
\normalsize

\end{center}

\addtoconten_s_toc}_\protect\vspace_Sex}_

\addtocontenss_o¢){}

\addtocontontl{toc}{\protec_\begin{center}\protect\Large \protoct\bf

Appendices \protect\snd{centsr}\protect\vspace{Sex}\protect\nomalsiz@}

\addtocontents{_oc}(}

\input(\path appxA}

\sectionpasing

\input{\path appxB}

\sectionpagi_g

\input{\path appxC}

............................... REFERE|CES

\sectionpaging

\inpu_{\path bibl}

X............................... EID OF DOCUNEMT

\end{doc_ent}

120 92-12

B.2

hcho

r_

tel •

ru •

rem •

tom •

ten •

tom •

zeta•

tom •

rli

The Program Compilation Script

off

(31-Ju1-1992) (CJ_code.bat)

8••888#•88888:1r #•88888888••8888•888558841t|•$$_•nnsu•_•_8_8••#•8_•_•

Copyrisht (C) 1992, C81iforntl Znstituto of Technolo_7 •

ill rights reserved. U. S. Oovermsent sponsorship under |ASk •

Contract !AS7-918 is acknoelodged. •

Kobert C. Tausuorzhe •

Jot Propulslon Laboratory •

4800 Oak Grove Drive •

Pasadena, CA 91009-8099 •

•8•••88888:1r8888808888888•888888##888888|8885888|8•8858•8888888888•88888•88

rem

r_

ConJo_ envlzounent transfoz_ation for I_IE, mud K/_E the ConJoin

Program.

if exist CJ_codo.mak gore ok

echo Be file CJ_code.nak

goto fin

: ok

r@l

E@m

set up the HIKE envizozment for locating include files, librazles,

the KAKE pzograu, mnd temporaz 7 file i/o:

set savepath-_path_

set pa•h=c:\ckmscS\bin;_savepath_

sot include=c:\c\ltaei\h;c:\c\topc\h

set lib=c:\c\lib

sot init=c:\c_cS\bin

set tn_nc:\temp

ten KtIE the Conjoin profFram

m&ke CJ_code.mLk

tom restore the envlrOl_tent

set path=_savepath_

sot say•path =

sot lib=

set tm])-

set include-

set init=

:fin

92-12 121

B.3 The Program Compilation MAKE File

• (31- Ju1-1_32) (el_code ._Lk)

#####$8$8|$##SS#8##8$#8#|#8##eS##_88|||SIS####US|_S_##|8_SS#|_8_#S_8_

Copyright (C) 1992, California Tnstitute of Technolo_r #

All rights reserved. U. S. Govel-nment sponsorship _der HIS& |

Contract |iS7-918 is acknouledged. •

•

I_ Robert C. TansgoTthe •

Jet Propulsion Laboratory •

• 8 4800 Oak Grove Drive •

t4; Pasadena, CI 91009-8099 •

8# •

•

•••••••S••|•_SS•|||•|8••I;••|••••••8••••••8••|••_#••888•|•••••8•_|••8••••S

ConJoin progrsl construction instructions

ConJoin. exe : ConJoin.c C3_code .taLk

¢1 /V3 /Ox ConJoin.c /F 1000 /]._Lk /|OE stOl_.].ib;

de]. Conjoin. obj

The compiler is directed to print all warning messages and make the program

internal stack size be 0xl000. The program is built using the small memory

model, the compiler default. The automatic linking process searches the small-

memory-model TOP-C library for the functions discussed in Section 8.

122 92-12

B.4 The Document Construction Script

Qecho off

re=, (31-Ju1-1992) (CJ_doc.bat)

re-, 111111111111111111111111111#1111811111188111111111111811111111111111118111

rom # •

re.. • Copyright (C) 1992. California Institute of Technolo_ •

re.. • 111 rights reserved. U. $. Government sponsorship under |1$£ •

re • Contract |1S7-918 is acknouledged. •

re • •

rel• Robert C. Tausgorthe •

re • Jet Propulsion Laboratoz 7 •
rein • 4800 Oak Grove Drive •

rest • Pasadena, Cl 91009-8099 •

re.. • •

re" • •

re..

re.. lUKE the ConJoin usage "essage and entire document.

..ake /l cj_usage...ak

..ake cj_do¢ .ask

Two separate HAKE invocations are made. The first,,, made under the /I

option, causes HAKE to ignore an error return code from processors called by

H,e,KE. This option is necessary, because CJ .usage.,,ak executes Covffoin with
no command arguments, a condition that causes the usage message to print and

the program to terminate with an error-indicating return code. The CovJoin

output, in this case, is redirected into the CJ_usage.nsg file for _,access into
Section 4.2 of this document.

The second HAKE invocation compiles and builds the document you are read-

ing.

92-12 123

B.5 The Usage Message RAKE File

• (31- Ju1-1992) (CJ_usqe .nak)

8888,88###_ J88S,_ 8881 J,,,#8888 St# J8##888#8,8|U88 JS_,l_t #S#8815|88# Jl_#8#88_

t4 CopyriKht (C) 1992, California Tnstitute of Technology I "

S, Lll rights reserved. U. S. Government sponsorship under IISi #

Contract |1S7-918 is acknogledged. S
e

Robert C. Tausgorths •

Jet Propulsion Laboratory S

4800 Oak Grove Drive •

#1 Puadsna, CA 91009-8099 •

This is a separate K/KE file because it is oxscnted vith the /I

• option to ignore exit codes, because ConJoi_ returns an error code on
S term_atioR.

CJ_usage.msg: Conjoin.exe

ConJoin >CJ_usaKe.ms K

124 92-12

B.6 The Document MAKE File

$ (31-Ju.I-1992) (C.]_do¢ .taLk)

#8####S#|#$#$$$##$|$#8lr##$$#8|l_It#U|M_#n$|8|#8#N_t_SM#USn_|i#|8##

|$ •

Copyright (C) 1992, California Institute of Technology •

8# _1 rights reserved. U. S. Government sponlorship under IASI •

• • Contract IIIS7-918 is acknoeledged. •

• • Robert C. Tan•worth• •

88 Jet Propulsion Laboratory •
• • 4800 elk Grove Drive •

• # Pasadena, CA 91009-8099 •

8• 8

88 8

0#8#•••#•8$8|•###•|•|•8•••••$08#8##•$•N8•#•88#•0•|0||•••#••###8•08888#8##8

• Directory of TOP-C Functions

tol_=\c_opc\c\ 8

CJ.prog.ca1: ConJoin.c CJ_prog.cal

calltree /c CJ_prog.cal /b CJ.prog.by ConJoi_.c

C3_prog.by: ConJoin.c CJ_prog.by

calltree /c CJ_prog.cal /b CJ.prog,by ConJoJ_.c

CJ.prog.siz: ConJoin.c

flines ConJoin.c >CJ.prog.siz

CJ_appxl,Xex: CJ.Ippx&.cjn ConJoin.c

ConJo_ -a CJ_appzA

CJ.appxB.zex: CJ_AppxB.cjn CJ_reprt.tex cj.code.bat cj.doc.bat \

cj.code.ma.k cj_doc.mak

Conjoin -a C2_appxB

C3_appxC._ex: CJ_appxC.cjn CJ_prog.cal CJ_prog.by

ConJoin "a CJ_appxC

CJ.body,tex: CJ.body.CJn ConJoin.c C3_style,tex CJ_usage.msg \

CJ_figl.tex CJ_prog.siz $(topc)stratr_a.c $(topc)strdup.c \

$(topc)strfnb.c $(topc)str2er.c $(topc)strtcpy.c $(topc)etrtrJJa.c

Conjoin -a CJ.body

CJ_reprt.dvi: CJ_reprt.tex CJ_style.tex CJ.abstr.tex CJ_ac]mo.tex \

C3_credt.tex CJ_body,tex CJ_appxA.tex CJ.appxB.tex \

CJ_appxC.tex CJ.bibl.tsx CJ.doc.mtk

call latex CJ_reprt

call dvi CJ.reprt

The calltree program is a utility supplied with Microsoft C. It prints out
call trees (structure diagrams) and reference trees (ca/led-by diagrams). These
appear in Appendix C.

92-12 125

The/lines utility scans the named file and writes the number of lines in

that file normally to the console, but here to a size file accessed by C3__body. CJn.

The CovJoin program creates the .TeX versions of Appendices A, B, and

C and the text body; the -a option suppresses printing of the JPL/Caltech
copyright notice and program announcement.

This report was then composed by the I_TEX system, which is set up and
executed called as a batch command, latex.

This report was then printed by calling the batch command dvi, which

converts the device-independent output of TEX into the typeset form that you

are reading now.

92-12 127

C Coq?oin FUNCTIONAL STRUCTURE

C.I Call Tree

The followinglistingdenotesthe invoked functionstructureofCo_oin in depth-

firstorder. Multiple branches of the same subtree are not shown. Function

names followedby '?' are externalto Co%7oin, and are eitherin the standard

ANSI libraryor the TOP-C library. Although not functions,some defined

terms, such as NIL, NOT, AID, and other spurious entries may appear in the

listing because of a flaw in the Microsoft calltree utility used to generate the
tree.

MIL

FGETSIZE

st rdup

strtr_

fgets

main

initialization

conmand.lixte

[strlwr?

[sprintf?

[strlen?

J strcpy?

[strcat?

LUItOILUC@

I privily

usage

J pri_tf?

error__ssa_

[printf?

[fprintf?

file_defaults

] lOT?

[st rcl_r?

[strcat?

[strtcpy?

s_rcnp?

strcpy?

strcl_?

fopen?
FGL_SIZE...

fclose?

open.io.files

file_open

lOT?

fopen7

strcpy?
strncat 7

$tEcat?

strerror?

error_lessage...

fopen7

PRE@EDING PhGE BLANK NOT FILMED

128 g2-12

[fcloseT

J strch:?

[strcpyT

J remove?

I rename?

1: _-est amp

strlen?

stz'Dset ?

time?

localtiaeT

st _st r =,J|?

st rcpy?

asct_T

right.fill

I strnset?

J strlen?

fprintf?

ConJoin_f _es

frets..,

st rfnb?

fprintfT

stretr?

strcpTT

directive

etrcpy?

strstr?

strez_

I ABD?
[strstr?

] strtcpy?

i strcp7?

J stratr_?

strlen?

atoi?

st_nset?

str_nbT

strdup,,,

strlwr?

stratria?

strcxp?

error.message.,,

sprint f?

strinsert?

AED?

strcat?

acceBe

strext...

•,at ch_pLrmters

JOT?

strstr?

strcpy?

error_Message...

stratri_?

strtcpy?

strfnb?

92-12 129

etrlen?

liD?

access.condition

stratria?

strstr?

atoi?

strlen?

strchr?

OK?

isdigit7

strdnp..,

strtri_a...

strfnb?

lOT?

open_access

I strcpy?

I lOT?

I fopen?

[strcat?

error_]aessage...

printf?

fprintf?

sc an_ t o _bEn_mat ch

I fgetpos?

l fgets...

I strstr?

J fsetpos?

I error_message...

copy_to.end_aatch

fgststr

SOT?.

fsets...

isspacs?

ORisprJ_t?

strcat?

strtr_a...

|OT?

etrdup...

error_message...

free?

putline

I liD?

I strchr?

I ain7

I fprlntf?

strstr?

_ree?

fclose?

trlen7

fclose?

free?

printf?

fopen?

fprintf?

access.lines7

130 92-12

C.2 Reference List

The following list displays the invoked-by structure of functions within the

C0xL70in program. As in the previous section of this appendix, NIL appears

at the whim of the reference-tree-producing tool.

ConJoin_files : nain

FGETSIT.E: initialization

|IL :

access : ConJoin_fLXos

access_condit ion: mat oh.patterers

announce : initialization

command_line : initialization

copy_t o_end.match : access

directive : Conjoin_files

errorjessage: access copy_to.end_match directive

file_olin initialization mat ch_paramet ere

scan_t o.bgn_mat ch

fgets: Conjoin.files fgetstr scan.to_bKn_match

fgetstr : copy_to.end_match

file_defaults : initialization

file_open: open_io_files

initialization: mitt

main:

match_parameters : access

open_access : access

open.io_files : main

putline : copy_to.end_match

right_fill : tlmestMtp

scan_to_bgn_match : access

strdup: access.condition copy_to_end_match directive

strext : access directive

92-12 131

scrtrim: accoss.condi¢ion fgotmtr

t i_est alp : main

usago : ini¢ializa¢ion

92-12 133

D REFERENCES

[1] Spear, Barbara, How to Document Your Software, TAB Books, Inc., Blue

Ridge Summit, PA, 1984.

[2] Jung, Karl, Psychological Types, London Press, 1923.

[3] Martin, James, and McClure, Carma, Diagramming Techniques for Ana-
lysts and Progm. mmers, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1985.

[4] Lamport, Leslie, ItTEX: A Document Preparation System User's Guide and
Reference Manual, Addison-Wesley Publishing Company, Reading, MA,
1986.

[5] Press, William H., et al., Numerical Recipes, Cambridge University Press,

Cambridge, England, 1986.

[6] Goldfarb, C. F., The SGML Handbook, Oxford University Press, 1990.

[7] Hypermedia/Time-based Document Structuring Language ISO/IEC Draft

International Standard 10744, International Organization for Standardiza-
tion and International Electrotechnical Commission.

[8] Newcomb, S. R., et al., "The HyTime Hypermedia/Time-Based Document

Structuring Language," Communications of the ACM, Vol. 34, No. 11,

November 1991, pp. 67-83.

[9] International Standard 8879, "Information processing--Text and office

systems--Standard Generalized Markup Language (SGML)," International

Orgainization for Standards, Reference No. 8879-1986 (E).

[10] Haan, Bernard J., et al., "IRIS Itypermedia Services," Communications of

the ACM, Vol. 35, No. 1, January 1992, pp. 36-51.

[11] Knuth, Donald E., "The WF._system of structured documentation," Com-

puter Science Report 980, Stanford University, Palo Alto, CA, September
1983.

[12] Knuth, Donald E., The TEXbook, Addison-Wesley Publishing Company,

Reading, MA, 1984.

[13] Knuth, Donald E., "Literate Programming," The Computer Journal, Vol.

27, No. 2, May, 1984, pp. 97-111.

[14] Cordes, David, and Brown, Marcus, "The Literate Programming Para-

digm," 1EEE Computer, Voi. 24, No. 6, June, 1991, pp. 52-62.

PRECEDING PAGE BLANK NOT FILMED

134 92-12

[15] Hyman, Marco C., "Literate C++," Computer Language, Vol. 7, No. 7, June

1991, pp. 67-79.

[16] Levy, S., "WElt Adapted to C--Another Approach," TUGboat, Vol. 8, No.

1, April, 1987, pp. 12-14.

[17] Thimbleby, Harold, "Experiences in 'literate programming' using ¢WEB,"

The Computer Journal, Vol. 29, 1986, pp. 201-211.

[18] Sewell, Wayne, Weaving a Program: Literate Programming in WEB, Van
Nostrand Reinhold, New York, 1989.

[19] Webster's Ninth New Collegiate Dictiona_, Merriam-Webster Inc., Spring-
field, MA, 1983.

[20] Tausworthe, Robert C., "A General Software Reliability Process Simula-

tion Technique," Publication 91-7, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, April 1, 1991.

[21] Meyer, John, XEROX Ventura Publisher Edition Reference Guide, Xerox

Corp., 1987.

[22] Elsayed, E. A., Taguchi, G., and Tsiang, T., Quality Engineering in Pro-
duction Systems, McGraw-Hill Book Co., NY, 1988.

[23] Plum, Thomas, C Programming Standards and Guidelines, Plum Hall Inc.,
Cardiff, N J, 1982.

[24] Thomas, Edward J., et al., "A Bibliography of Programming Style," SIG-
PLAN Notices, Vol. 25, No. 2, 1990, pp. 7-16.

[25] Tausworthe, Robert C., Standardized Development of Computer Software,

Volume 1: Methods, Volume 2: Standards, Prentice-Hall Inc., Englewood
Cliffs, NJ, 1977 and 1979.

[26] Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Lan-

guage, Prentice-Hall Inc., Englewood Cliffs, N J, 1978.

[27] American National Standard for Information Systems--Programming Lan-

guage C, X3.159-1989, Draft X3Jll/88-158, American National Standards

Institute, December 7, 1988.

• " TECHNICAL REPORT STANDARD TITLE PAGE

3. Recipient's Catalog No.

5. Report Date
Augustl, 1992

I

1. Report No. 92-12 12. Government Access|on No.
i

4. Title and Subtitle
Conjunctive Programming--An Integrat-

ive Approach to Software System Synthesis
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Robert C. Tausworthe

I0. Work Unit No.9. Per_rming Organization Name and Address

JET PROPULSION LABORATORY

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

11. Contract or Grant No.
NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code
BK-506-59-II-01-00 (Task: RE156)

15. Supplementary Notes

16. Abstract

This report introduces a technique of software documentation

called conjunctive programming and discusses its role in the devel-

opment and maintenance of software systems. The report also de-

scribes the Con..7"oin tool, an adjunct to assist practitioners. Aimed at

supporting software reuse while conforming with conventional devel-

opment practices, conjunctive programming is defined as the extrac-

tion, integration, and embellishment of pertinent information ob-
tained directly from an existing database of software artifacts, such

as specifications, source code, configuration data, link-edit scripts,
utility files, and other relevant information, into a product that

achieves desired levels of detail, content, and production quality.

Conjunctive programs typically include automatically generated ta-

bles of contents, indexes, cross references, bibliographic citations, ta-

bles, and figures (including graphics and illustrations). This report

presents an example of conjunctive programming by documenting

the use and implementation of the CorJain program.

17. Key Wor_ _elected by Author_))

Documentation and Information Technology

Mathematical and Computer Sciences

Computer Programming and Software

18. Distribution Statement

Unlimited--Unclass:ified

19. Security Clmsif. _f this report)

Unclassified

20. Security Clmslf. (of this page)

Unclassified

21. No. of Pages

134

22. Price

JPL 0184 Rgf83

